ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl Unicode version

Theorem ercl 6598
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ercl  |-  ( ph  ->  A  e.  X )

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4  |-  ( ph  ->  R  Er  X )
2 errel 6596 . . . 4  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . 3  |-  ( ph  ->  Rel  R )
4 ersym.2 . . 3  |-  ( ph  ->  A R B )
5 releldm 4897 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  A  e.  dom  R
)
7 erdm 6597 . . 3  |-  ( R  Er  X  ->  dom  R  =  X )
81, 7syl 14 . 2  |-  ( ph  ->  dom  R  =  X )
96, 8eleqtrd 2272 1  |-  ( ph  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   class class class wbr 4029   dom cdm 4659   Rel wrel 4664    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-dm 4669  df-er 6587
This theorem is referenced by:  ercl2  6600  erthi  6635  qliftfun  6671  qusgrp2  13183
  Copyright terms: Public domain W3C validator