ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl Unicode version

Theorem ercl 6691
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ercl  |-  ( ph  ->  A  e.  X )

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4  |-  ( ph  ->  R  Er  X )
2 errel 6689 . . . 4  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . 3  |-  ( ph  ->  Rel  R )
4 ersym.2 . . 3  |-  ( ph  ->  A R B )
5 releldm 4959 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  A  e.  dom  R
)
7 erdm 6690 . . 3  |-  ( R  Er  X  ->  dom  R  =  X )
81, 7syl 14 . 2  |-  ( ph  ->  dom  R  =  X )
96, 8eleqtrd 2308 1  |-  ( ph  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   class class class wbr 4083   dom cdm 4719   Rel wrel 4724    Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-dm 4729  df-er 6680
This theorem is referenced by:  ercl2  6693  erthi  6728  qliftfun  6764  qusgrp2  13650
  Copyright terms: Public domain W3C validator