ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl Unicode version

Theorem ercl 6319
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ercl  |-  ( ph  ->  A  e.  X )

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4  |-  ( ph  ->  R  Er  X )
2 errel 6317 . . . 4  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . 3  |-  ( ph  ->  Rel  R )
4 ersym.2 . . 3  |-  ( ph  ->  A R B )
5 releldm 4685 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
63, 4, 5syl2anc 404 . 2  |-  ( ph  ->  A  e.  dom  R
)
7 erdm 6318 . . 3  |-  ( R  Er  X  ->  dom  R  =  X )
81, 7syl 14 . 2  |-  ( ph  ->  dom  R  =  X )
96, 8eleqtrd 2167 1  |-  ( ph  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   class class class wbr 3853   dom cdm 4454   Rel wrel 4459    Er wer 6305
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-dm 4464  df-er 6308
This theorem is referenced by:  ercl2  6321  erthi  6354  qliftfun  6390
  Copyright terms: Public domain W3C validator