ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl Unicode version

Theorem ercl 6654
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ercl  |-  ( ph  ->  A  e.  X )

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4  |-  ( ph  ->  R  Er  X )
2 errel 6652 . . . 4  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . 3  |-  ( ph  ->  Rel  R )
4 ersym.2 . . 3  |-  ( ph  ->  A R B )
5 releldm 4932 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
63, 4, 5syl2anc 411 . 2  |-  ( ph  ->  A  e.  dom  R
)
7 erdm 6653 . . 3  |-  ( R  Er  X  ->  dom  R  =  X )
81, 7syl 14 . 2  |-  ( ph  ->  dom  R  =  X )
96, 8eleqtrd 2286 1  |-  ( ph  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   class class class wbr 4059   dom cdm 4693   Rel wrel 4698    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-dm 4703  df-er 6643
This theorem is referenced by:  ercl2  6656  erthi  6691  qliftfun  6727  qusgrp2  13564
  Copyright terms: Public domain W3C validator