ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl Unicode version

Theorem ercl 6512
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1  |-  ( ph  ->  R  Er  X )
ersym.2  |-  ( ph  ->  A R B )
Assertion
Ref Expression
ercl  |-  ( ph  ->  A  e.  X )

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4  |-  ( ph  ->  R  Er  X )
2 errel 6510 . . . 4  |-  ( R  Er  X  ->  Rel  R )
31, 2syl 14 . . 3  |-  ( ph  ->  Rel  R )
4 ersym.2 . . 3  |-  ( ph  ->  A R B )
5 releldm 4839 . . 3  |-  ( ( Rel  R  /\  A R B )  ->  A  e.  dom  R )
63, 4, 5syl2anc 409 . 2  |-  ( ph  ->  A  e.  dom  R
)
7 erdm 6511 . . 3  |-  ( R  Er  X  ->  dom  R  =  X )
81, 7syl 14 . 2  |-  ( ph  ->  dom  R  =  X )
96, 8eleqtrd 2245 1  |-  ( ph  ->  A  e.  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   class class class wbr 3982   dom cdm 4604   Rel wrel 4609    Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-er 6501
This theorem is referenced by:  ercl2  6514  erthi  6547  qliftfun  6583
  Copyright terms: Public domain W3C validator