ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth Unicode version

Theorem erth 6689
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1  |-  ( ph  ->  R  Er  X )
erth.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erth  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  ph )
2 erth.1 . . . . . . . . 9  |-  ( ph  ->  R  Er  X )
32ersymb 6657 . . . . . . . 8  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
43biimpa 296 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  B R A )
51, 4jca 306 . . . . . 6  |-  ( (
ph  /\  A R B )  ->  ( ph  /\  B R A ) )
62ertr 6658 . . . . . . 7  |-  ( ph  ->  ( ( B R A  /\  A R x )  ->  B R x ) )
76impl 380 . . . . . 6  |-  ( ( ( ph  /\  B R A )  /\  A R x )  ->  B R x )
85, 7sylan 283 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  A R x )  ->  B R x )
92ertr 6658 . . . . . 6  |-  ( ph  ->  ( ( A R B  /\  B R x )  ->  A R x ) )
109impl 380 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  B R x )  ->  A R x )
118, 10impbida 596 . . . 4  |-  ( (
ph  /\  A R B )  ->  ( A R x  <->  B R x ) )
12 vex 2779 . . . . 5  |-  x  e. 
_V
13 erth.2 . . . . . 6  |-  ( ph  ->  A  e.  X )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  A R B )  ->  A  e.  X )
15 elecg 6683 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  X )  ->  ( x  e.  [ A ] R  <->  A R x ) )
1612, 14, 15sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  A R x ) )
17 errel 6652 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
182, 17syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
19 brrelex2 4734 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
2018, 19sylan 283 . . . . 5  |-  ( (
ph  /\  A R B )  ->  B  e.  _V )
21 elecg 6683 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
2212, 20, 21sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ B ] R  <->  B R x ) )
2311, 16, 223bitr4d 220 . . 3  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
2423eqrdv 2205 . 2  |-  ( (
ph  /\  A R B )  ->  [ A ] R  =  [ B ] R )
252adantr 276 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  R  Er  X )
262, 13erref 6663 . . . . . . 7  |-  ( ph  ->  A R A )
2726adantr 276 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R A )
2813adantr 276 . . . . . . 7  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  X )
29 elecg 6683 . . . . . . 7  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ] R  <->  A R A ) )
3028, 28, 29syl2anc 411 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ A ] R  <->  A R A ) )
3127, 30mpbird 167 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ A ] R )
32 simpr 110 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  [ A ] R  =  [ B ] R
)
3331, 32eleqtrd 2286 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ B ] R )
3425, 32ereldm 6688 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  X  <->  B  e.  X ) )
3528, 34mpbid 147 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B  e.  X )
36 elecg 6683 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A  e.  [ B ] R  <->  B R A ) )
3728, 35, 36syl2anc 411 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ B ] R  <->  B R A ) )
3833, 37mpbid 147 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B R A )
3925, 38ersym 6655 . 2  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R B )
4024, 39impbida 596 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776   class class class wbr 4059   Rel wrel 4698    Er wer 6640   [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-er 6643  df-ec 6645
This theorem is referenced by:  erth2  6690  erthi  6691  qliftfun  6727  eroveu  6736  th3qlem1  6747  enqeceq  7507  enq0eceq  7585  nnnq0lem1  7594  enreceq  7884  prsrlem1  7890  ercpbllemg  13277  eqg0el  13680  qusecsub  13782  zndvds  14526
  Copyright terms: Public domain W3C validator