| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erth | Unicode version | ||
| Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| erth.1 |
|
| erth.2 |
|
| Ref | Expression |
|---|---|
| erth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . 7
| |
| 2 | erth.1 |
. . . . . . . . 9
| |
| 3 | 2 | ersymb 6615 |
. . . . . . . 8
|
| 4 | 3 | biimpa 296 |
. . . . . . 7
|
| 5 | 1, 4 | jca 306 |
. . . . . 6
|
| 6 | 2 | ertr 6616 |
. . . . . . 7
|
| 7 | 6 | impl 380 |
. . . . . 6
|
| 8 | 5, 7 | sylan 283 |
. . . . 5
|
| 9 | 2 | ertr 6616 |
. . . . . 6
|
| 10 | 9 | impl 380 |
. . . . 5
|
| 11 | 8, 10 | impbida 596 |
. . . 4
|
| 12 | vex 2766 |
. . . . 5
| |
| 13 | erth.2 |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | elecg 6641 |
. . . . 5
| |
| 16 | 12, 14, 15 | sylancr 414 |
. . . 4
|
| 17 | errel 6610 |
. . . . . . 7
| |
| 18 | 2, 17 | syl 14 |
. . . . . 6
|
| 19 | brrelex2 4705 |
. . . . . 6
| |
| 20 | 18, 19 | sylan 283 |
. . . . 5
|
| 21 | elecg 6641 |
. . . . 5
| |
| 22 | 12, 20, 21 | sylancr 414 |
. . . 4
|
| 23 | 11, 16, 22 | 3bitr4d 220 |
. . 3
|
| 24 | 23 | eqrdv 2194 |
. 2
|
| 25 | 2 | adantr 276 |
. . 3
|
| 26 | 2, 13 | erref 6621 |
. . . . . . 7
|
| 27 | 26 | adantr 276 |
. . . . . 6
|
| 28 | 13 | adantr 276 |
. . . . . . 7
|
| 29 | elecg 6641 |
. . . . . . 7
| |
| 30 | 28, 28, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | 27, 30 | mpbird 167 |
. . . . 5
|
| 32 | simpr 110 |
. . . . 5
| |
| 33 | 31, 32 | eleqtrd 2275 |
. . . 4
|
| 34 | 25, 32 | ereldm 6646 |
. . . . . 6
|
| 35 | 28, 34 | mpbid 147 |
. . . . 5
|
| 36 | elecg 6641 |
. . . . 5
| |
| 37 | 28, 35, 36 | syl2anc 411 |
. . . 4
|
| 38 | 33, 37 | mpbid 147 |
. . 3
|
| 39 | 25, 38 | ersym 6613 |
. 2
|
| 40 | 24, 39 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-er 6601 df-ec 6603 |
| This theorem is referenced by: erth2 6648 erthi 6649 qliftfun 6685 eroveu 6694 th3qlem1 6705 enqeceq 7443 enq0eceq 7521 nnnq0lem1 7530 enreceq 7820 prsrlem1 7826 ercpbllemg 13032 eqg0el 13435 qusecsub 13537 zndvds 14281 |
| Copyright terms: Public domain | W3C validator |