ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth Unicode version

Theorem erth 6481
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1  |-  ( ph  ->  R  Er  X )
erth.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erth  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  ph )
2 erth.1 . . . . . . . . 9  |-  ( ph  ->  R  Er  X )
32ersymb 6451 . . . . . . . 8  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
43biimpa 294 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  B R A )
51, 4jca 304 . . . . . 6  |-  ( (
ph  /\  A R B )  ->  ( ph  /\  B R A ) )
62ertr 6452 . . . . . . 7  |-  ( ph  ->  ( ( B R A  /\  A R x )  ->  B R x ) )
76impl 378 . . . . . 6  |-  ( ( ( ph  /\  B R A )  /\  A R x )  ->  B R x )
85, 7sylan 281 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  A R x )  ->  B R x )
92ertr 6452 . . . . . 6  |-  ( ph  ->  ( ( A R B  /\  B R x )  ->  A R x ) )
109impl 378 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  B R x )  ->  A R x )
118, 10impbida 586 . . . 4  |-  ( (
ph  /\  A R B )  ->  ( A R x  <->  B R x ) )
12 vex 2692 . . . . 5  |-  x  e. 
_V
13 erth.2 . . . . . 6  |-  ( ph  ->  A  e.  X )
1413adantr 274 . . . . 5  |-  ( (
ph  /\  A R B )  ->  A  e.  X )
15 elecg 6475 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  X )  ->  ( x  e.  [ A ] R  <->  A R x ) )
1612, 14, 15sylancr 411 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  A R x ) )
17 errel 6446 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
182, 17syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
19 brrelex2 4588 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
2018, 19sylan 281 . . . . 5  |-  ( (
ph  /\  A R B )  ->  B  e.  _V )
21 elecg 6475 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
2212, 20, 21sylancr 411 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ B ] R  <->  B R x ) )
2311, 16, 223bitr4d 219 . . 3  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
2423eqrdv 2138 . 2  |-  ( (
ph  /\  A R B )  ->  [ A ] R  =  [ B ] R )
252adantr 274 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  R  Er  X )
262, 13erref 6457 . . . . . . 7  |-  ( ph  ->  A R A )
2726adantr 274 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R A )
2813adantr 274 . . . . . . 7  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  X )
29 elecg 6475 . . . . . . 7  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ] R  <->  A R A ) )
3028, 28, 29syl2anc 409 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ A ] R  <->  A R A ) )
3127, 30mpbird 166 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ A ] R )
32 simpr 109 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  [ A ] R  =  [ B ] R
)
3331, 32eleqtrd 2219 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ B ] R )
3425, 32ereldm 6480 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  X  <->  B  e.  X ) )
3528, 34mpbid 146 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B  e.  X )
36 elecg 6475 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A  e.  [ B ] R  <->  B R A ) )
3728, 35, 36syl2anc 409 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ B ] R  <->  B R A ) )
3833, 37mpbid 146 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B R A )
3925, 38ersym 6449 . 2  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R B )
4024, 39impbida 586 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937   Rel wrel 4552    Er wer 6434   [cec 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-er 6437  df-ec 6439
This theorem is referenced by:  erth2  6482  erthi  6483  qliftfun  6519  eroveu  6528  th3qlem1  6539  enqeceq  7191  enq0eceq  7269  nnnq0lem1  7278  enreceq  7568  prsrlem1  7574
  Copyright terms: Public domain W3C validator