| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > erth | Unicode version | ||
| Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| erth.1 | 
 | 
| erth.2 | 
 | 
| Ref | Expression | 
|---|---|
| erth | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . . . . 7
 | |
| 2 | erth.1 | 
. . . . . . . . 9
 | |
| 3 | 2 | ersymb 6606 | 
. . . . . . . 8
 | 
| 4 | 3 | biimpa 296 | 
. . . . . . 7
 | 
| 5 | 1, 4 | jca 306 | 
. . . . . 6
 | 
| 6 | 2 | ertr 6607 | 
. . . . . . 7
 | 
| 7 | 6 | impl 380 | 
. . . . . 6
 | 
| 8 | 5, 7 | sylan 283 | 
. . . . 5
 | 
| 9 | 2 | ertr 6607 | 
. . . . . 6
 | 
| 10 | 9 | impl 380 | 
. . . . 5
 | 
| 11 | 8, 10 | impbida 596 | 
. . . 4
 | 
| 12 | vex 2766 | 
. . . . 5
 | |
| 13 | erth.2 | 
. . . . . 6
 | |
| 14 | 13 | adantr 276 | 
. . . . 5
 | 
| 15 | elecg 6632 | 
. . . . 5
 | |
| 16 | 12, 14, 15 | sylancr 414 | 
. . . 4
 | 
| 17 | errel 6601 | 
. . . . . . 7
 | |
| 18 | 2, 17 | syl 14 | 
. . . . . 6
 | 
| 19 | brrelex2 4704 | 
. . . . . 6
 | |
| 20 | 18, 19 | sylan 283 | 
. . . . 5
 | 
| 21 | elecg 6632 | 
. . . . 5
 | |
| 22 | 12, 20, 21 | sylancr 414 | 
. . . 4
 | 
| 23 | 11, 16, 22 | 3bitr4d 220 | 
. . 3
 | 
| 24 | 23 | eqrdv 2194 | 
. 2
 | 
| 25 | 2 | adantr 276 | 
. . 3
 | 
| 26 | 2, 13 | erref 6612 | 
. . . . . . 7
 | 
| 27 | 26 | adantr 276 | 
. . . . . 6
 | 
| 28 | 13 | adantr 276 | 
. . . . . . 7
 | 
| 29 | elecg 6632 | 
. . . . . . 7
 | |
| 30 | 28, 28, 29 | syl2anc 411 | 
. . . . . 6
 | 
| 31 | 27, 30 | mpbird 167 | 
. . . . 5
 | 
| 32 | simpr 110 | 
. . . . 5
 | |
| 33 | 31, 32 | eleqtrd 2275 | 
. . . 4
 | 
| 34 | 25, 32 | ereldm 6637 | 
. . . . . 6
 | 
| 35 | 28, 34 | mpbid 147 | 
. . . . 5
 | 
| 36 | elecg 6632 | 
. . . . 5
 | |
| 37 | 28, 35, 36 | syl2anc 411 | 
. . . 4
 | 
| 38 | 33, 37 | mpbid 147 | 
. . 3
 | 
| 39 | 25, 38 | ersym 6604 | 
. 2
 | 
| 40 | 24, 39 | impbida 596 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-er 6592 df-ec 6594 | 
| This theorem is referenced by: erth2 6639 erthi 6640 qliftfun 6676 eroveu 6685 th3qlem1 6696 enqeceq 7426 enq0eceq 7504 nnnq0lem1 7513 enreceq 7803 prsrlem1 7809 ercpbllemg 12973 eqg0el 13359 qusecsub 13461 zndvds 14205 | 
| Copyright terms: Public domain | W3C validator |