ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth Unicode version

Theorem erth 6668
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1  |-  ( ph  ->  R  Er  X )
erth.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erth  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  ph )
2 erth.1 . . . . . . . . 9  |-  ( ph  ->  R  Er  X )
32ersymb 6636 . . . . . . . 8  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
43biimpa 296 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  B R A )
51, 4jca 306 . . . . . 6  |-  ( (
ph  /\  A R B )  ->  ( ph  /\  B R A ) )
62ertr 6637 . . . . . . 7  |-  ( ph  ->  ( ( B R A  /\  A R x )  ->  B R x ) )
76impl 380 . . . . . 6  |-  ( ( ( ph  /\  B R A )  /\  A R x )  ->  B R x )
85, 7sylan 283 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  A R x )  ->  B R x )
92ertr 6637 . . . . . 6  |-  ( ph  ->  ( ( A R B  /\  B R x )  ->  A R x ) )
109impl 380 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  B R x )  ->  A R x )
118, 10impbida 596 . . . 4  |-  ( (
ph  /\  A R B )  ->  ( A R x  <->  B R x ) )
12 vex 2775 . . . . 5  |-  x  e. 
_V
13 erth.2 . . . . . 6  |-  ( ph  ->  A  e.  X )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  A R B )  ->  A  e.  X )
15 elecg 6662 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  X )  ->  ( x  e.  [ A ] R  <->  A R x ) )
1612, 14, 15sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  A R x ) )
17 errel 6631 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
182, 17syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
19 brrelex2 4717 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
2018, 19sylan 283 . . . . 5  |-  ( (
ph  /\  A R B )  ->  B  e.  _V )
21 elecg 6662 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
2212, 20, 21sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ B ] R  <->  B R x ) )
2311, 16, 223bitr4d 220 . . 3  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
2423eqrdv 2203 . 2  |-  ( (
ph  /\  A R B )  ->  [ A ] R  =  [ B ] R )
252adantr 276 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  R  Er  X )
262, 13erref 6642 . . . . . . 7  |-  ( ph  ->  A R A )
2726adantr 276 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R A )
2813adantr 276 . . . . . . 7  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  X )
29 elecg 6662 . . . . . . 7  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ] R  <->  A R A ) )
3028, 28, 29syl2anc 411 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ A ] R  <->  A R A ) )
3127, 30mpbird 167 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ A ] R )
32 simpr 110 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  [ A ] R  =  [ B ] R
)
3331, 32eleqtrd 2284 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ B ] R )
3425, 32ereldm 6667 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  X  <->  B  e.  X ) )
3528, 34mpbid 147 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B  e.  X )
36 elecg 6662 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A  e.  [ B ] R  <->  B R A ) )
3728, 35, 36syl2anc 411 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ B ] R  <->  B R A ) )
3833, 37mpbid 147 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B R A )
3925, 38ersym 6634 . 2  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R B )
4024, 39impbida 596 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4045   Rel wrel 4681    Er wer 6619   [cec 6620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-er 6622  df-ec 6624
This theorem is referenced by:  erth2  6669  erthi  6670  qliftfun  6706  eroveu  6715  th3qlem1  6726  enqeceq  7474  enq0eceq  7552  nnnq0lem1  7561  enreceq  7851  prsrlem1  7857  ercpbllemg  13195  eqg0el  13598  qusecsub  13700  zndvds  14444
  Copyright terms: Public domain W3C validator