ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth Unicode version

Theorem erth 6726
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1  |-  ( ph  ->  R  Er  X )
erth.2  |-  ( ph  ->  A  e.  X )
Assertion
Ref Expression
erth  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )

Proof of Theorem erth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  ph )
2 erth.1 . . . . . . . . 9  |-  ( ph  ->  R  Er  X )
32ersymb 6694 . . . . . . . 8  |-  ( ph  ->  ( A R B  <-> 
B R A ) )
43biimpa 296 . . . . . . 7  |-  ( (
ph  /\  A R B )  ->  B R A )
51, 4jca 306 . . . . . 6  |-  ( (
ph  /\  A R B )  ->  ( ph  /\  B R A ) )
62ertr 6695 . . . . . . 7  |-  ( ph  ->  ( ( B R A  /\  A R x )  ->  B R x ) )
76impl 380 . . . . . 6  |-  ( ( ( ph  /\  B R A )  /\  A R x )  ->  B R x )
85, 7sylan 283 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  A R x )  ->  B R x )
92ertr 6695 . . . . . 6  |-  ( ph  ->  ( ( A R B  /\  B R x )  ->  A R x ) )
109impl 380 . . . . 5  |-  ( ( ( ph  /\  A R B )  /\  B R x )  ->  A R x )
118, 10impbida 598 . . . 4  |-  ( (
ph  /\  A R B )  ->  ( A R x  <->  B R x ) )
12 vex 2802 . . . . 5  |-  x  e. 
_V
13 erth.2 . . . . . 6  |-  ( ph  ->  A  e.  X )
1413adantr 276 . . . . 5  |-  ( (
ph  /\  A R B )  ->  A  e.  X )
15 elecg 6720 . . . . 5  |-  ( ( x  e.  _V  /\  A  e.  X )  ->  ( x  e.  [ A ] R  <->  A R x ) )
1612, 14, 15sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  A R x ) )
17 errel 6689 . . . . . . 7  |-  ( R  Er  X  ->  Rel  R )
182, 17syl 14 . . . . . 6  |-  ( ph  ->  Rel  R )
19 brrelex2 4760 . . . . . 6  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  _V )
2018, 19sylan 283 . . . . 5  |-  ( (
ph  /\  A R B )  ->  B  e.  _V )
21 elecg 6720 . . . . 5  |-  ( ( x  e.  _V  /\  B  e.  _V )  ->  ( x  e.  [ B ] R  <->  B R x ) )
2212, 20, 21sylancr 414 . . . 4  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ B ] R  <->  B R x ) )
2311, 16, 223bitr4d 220 . . 3  |-  ( (
ph  /\  A R B )  ->  (
x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
2423eqrdv 2227 . 2  |-  ( (
ph  /\  A R B )  ->  [ A ] R  =  [ B ] R )
252adantr 276 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  R  Er  X )
262, 13erref 6700 . . . . . . 7  |-  ( ph  ->  A R A )
2726adantr 276 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R A )
2813adantr 276 . . . . . . 7  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  X )
29 elecg 6720 . . . . . . 7  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ] R  <->  A R A ) )
3028, 28, 29syl2anc 411 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ A ] R  <->  A R A ) )
3127, 30mpbird 167 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ A ] R )
32 simpr 110 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  [ A ] R  =  [ B ] R
)
3331, 32eleqtrd 2308 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A  e.  [ B ] R )
3425, 32ereldm 6725 . . . . . 6  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  X  <->  B  e.  X ) )
3528, 34mpbid 147 . . . . 5  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B  e.  X )
36 elecg 6720 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A  e.  [ B ] R  <->  B R A ) )
3728, 35, 36syl2anc 411 . . . 4  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  -> 
( A  e.  [ B ] R  <->  B R A ) )
3833, 37mpbid 147 . . 3  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  B R A )
3925, 38ersym 6692 . 2  |-  ( (
ph  /\  [ A ] R  =  [ B ] R )  ->  A R B )
4024, 39impbida 598 1  |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   class class class wbr 4083   Rel wrel 4724    Er wer 6677   [cec 6678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-er 6680  df-ec 6682
This theorem is referenced by:  erth2  6727  erthi  6728  qliftfun  6764  eroveu  6773  th3qlem1  6784  enqeceq  7546  enq0eceq  7624  nnnq0lem1  7633  enreceq  7923  prsrlem1  7929  ercpbllemg  13363  eqg0el  13766  qusecsub  13868  zndvds  14613
  Copyright terms: Public domain W3C validator