Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erth | Unicode version |
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
erth.1 | |
erth.2 |
Ref | Expression |
---|---|
erth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . 7 | |
2 | erth.1 | . . . . . . . . 9 | |
3 | 2 | ersymb 6515 | . . . . . . . 8 |
4 | 3 | biimpa 294 | . . . . . . 7 |
5 | 1, 4 | jca 304 | . . . . . 6 |
6 | 2 | ertr 6516 | . . . . . . 7 |
7 | 6 | impl 378 | . . . . . 6 |
8 | 5, 7 | sylan 281 | . . . . 5 |
9 | 2 | ertr 6516 | . . . . . 6 |
10 | 9 | impl 378 | . . . . 5 |
11 | 8, 10 | impbida 586 | . . . 4 |
12 | vex 2729 | . . . . 5 | |
13 | erth.2 | . . . . . 6 | |
14 | 13 | adantr 274 | . . . . 5 |
15 | elecg 6539 | . . . . 5 | |
16 | 12, 14, 15 | sylancr 411 | . . . 4 |
17 | errel 6510 | . . . . . . 7 | |
18 | 2, 17 | syl 14 | . . . . . 6 |
19 | brrelex2 4645 | . . . . . 6 | |
20 | 18, 19 | sylan 281 | . . . . 5 |
21 | elecg 6539 | . . . . 5 | |
22 | 12, 20, 21 | sylancr 411 | . . . 4 |
23 | 11, 16, 22 | 3bitr4d 219 | . . 3 |
24 | 23 | eqrdv 2163 | . 2 |
25 | 2 | adantr 274 | . . 3 |
26 | 2, 13 | erref 6521 | . . . . . . 7 |
27 | 26 | adantr 274 | . . . . . 6 |
28 | 13 | adantr 274 | . . . . . . 7 |
29 | elecg 6539 | . . . . . . 7 | |
30 | 28, 28, 29 | syl2anc 409 | . . . . . 6 |
31 | 27, 30 | mpbird 166 | . . . . 5 |
32 | simpr 109 | . . . . 5 | |
33 | 31, 32 | eleqtrd 2245 | . . . 4 |
34 | 25, 32 | ereldm 6544 | . . . . . 6 |
35 | 28, 34 | mpbid 146 | . . . . 5 |
36 | elecg 6539 | . . . . 5 | |
37 | 28, 35, 36 | syl2anc 409 | . . . 4 |
38 | 33, 37 | mpbid 146 | . . 3 |
39 | 25, 38 | ersym 6513 | . 2 |
40 | 24, 39 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 class class class wbr 3982 wrel 4609 wer 6498 cec 6499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-er 6501 df-ec 6503 |
This theorem is referenced by: erth2 6546 erthi 6547 qliftfun 6583 eroveu 6592 th3qlem1 6603 enqeceq 7300 enq0eceq 7378 nnnq0lem1 7387 enreceq 7677 prsrlem1 7683 |
Copyright terms: Public domain | W3C validator |