| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erth | Unicode version | ||
| Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
| Ref | Expression |
|---|---|
| erth.1 |
|
| erth.2 |
|
| Ref | Expression |
|---|---|
| erth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . 7
| |
| 2 | erth.1 |
. . . . . . . . 9
| |
| 3 | 2 | ersymb 6657 |
. . . . . . . 8
|
| 4 | 3 | biimpa 296 |
. . . . . . 7
|
| 5 | 1, 4 | jca 306 |
. . . . . 6
|
| 6 | 2 | ertr 6658 |
. . . . . . 7
|
| 7 | 6 | impl 380 |
. . . . . 6
|
| 8 | 5, 7 | sylan 283 |
. . . . 5
|
| 9 | 2 | ertr 6658 |
. . . . . 6
|
| 10 | 9 | impl 380 |
. . . . 5
|
| 11 | 8, 10 | impbida 596 |
. . . 4
|
| 12 | vex 2779 |
. . . . 5
| |
| 13 | erth.2 |
. . . . . 6
| |
| 14 | 13 | adantr 276 |
. . . . 5
|
| 15 | elecg 6683 |
. . . . 5
| |
| 16 | 12, 14, 15 | sylancr 414 |
. . . 4
|
| 17 | errel 6652 |
. . . . . . 7
| |
| 18 | 2, 17 | syl 14 |
. . . . . 6
|
| 19 | brrelex2 4734 |
. . . . . 6
| |
| 20 | 18, 19 | sylan 283 |
. . . . 5
|
| 21 | elecg 6683 |
. . . . 5
| |
| 22 | 12, 20, 21 | sylancr 414 |
. . . 4
|
| 23 | 11, 16, 22 | 3bitr4d 220 |
. . 3
|
| 24 | 23 | eqrdv 2205 |
. 2
|
| 25 | 2 | adantr 276 |
. . 3
|
| 26 | 2, 13 | erref 6663 |
. . . . . . 7
|
| 27 | 26 | adantr 276 |
. . . . . 6
|
| 28 | 13 | adantr 276 |
. . . . . . 7
|
| 29 | elecg 6683 |
. . . . . . 7
| |
| 30 | 28, 28, 29 | syl2anc 411 |
. . . . . 6
|
| 31 | 27, 30 | mpbird 167 |
. . . . 5
|
| 32 | simpr 110 |
. . . . 5
| |
| 33 | 31, 32 | eleqtrd 2286 |
. . . 4
|
| 34 | 25, 32 | ereldm 6688 |
. . . . . 6
|
| 35 | 28, 34 | mpbid 147 |
. . . . 5
|
| 36 | elecg 6683 |
. . . . 5
| |
| 37 | 28, 35, 36 | syl2anc 411 |
. . . 4
|
| 38 | 33, 37 | mpbid 147 |
. . 3
|
| 39 | 25, 38 | ersym 6655 |
. 2
|
| 40 | 24, 39 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-er 6643 df-ec 6645 |
| This theorem is referenced by: erth2 6690 erthi 6691 qliftfun 6727 eroveu 6736 th3qlem1 6747 enqeceq 7507 enq0eceq 7585 nnnq0lem1 7594 enreceq 7884 prsrlem1 7890 ercpbllemg 13277 eqg0el 13680 qusecsub 13782 zndvds 14526 |
| Copyright terms: Public domain | W3C validator |