ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3 Unicode version

Theorem eu3 2065
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu3.1  |-  F/ y
ph
Assertion
Ref Expression
eu3  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu3
StepHypRef Expression
1 eu3.1 . . 3  |-  F/ y
ph
21nfri 1512 . 2  |-  ( ph  ->  A. y ph )
32eu3h 2064 1  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346   F/wnf 1453   E.wex 1485   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022
This theorem is referenced by:  eqeu  2900  reu3  2920  eunex  4545
  Copyright terms: Public domain W3C validator