ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3 Unicode version

Theorem eu3 2091
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu3.1  |-  F/ y
ph
Assertion
Ref Expression
eu3  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu3
StepHypRef Expression
1 eu3.1 . . 3  |-  F/ y
ph
21nfri 1533 . 2  |-  ( ph  ->  A. y ph )
32eu3h 2090 1  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362   F/wnf 1474   E.wex 1506   E!weu 2045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048
This theorem is referenced by:  eqeu  2934  reu3  2954  eunex  4597
  Copyright terms: Public domain W3C validator