| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu3h | Unicode version | ||
| Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eu3h.1 |
|
| Ref | Expression |
|---|---|
| eu3h |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2075 |
. . 3
| |
| 2 | eu3h.1 |
. . . 4
| |
| 3 | 2 | eumo0 2076 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | 2 | nfi 1476 |
. . . . 5
|
| 6 | 5 | mo23 2086 |
. . . 4
|
| 7 | 6 | anim2i 342 |
. . 3
|
| 8 | 5 | eu2 2089 |
. . 3
|
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | 4, 9 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 |
| This theorem is referenced by: eu3 2091 mo2r 2097 2eu4 2138 |
| Copyright terms: Public domain | W3C validator |