| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu3h | Unicode version | ||
| Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eu3h.1 |
|
| Ref | Expression |
|---|---|
| eu3h |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2084 |
. . 3
| |
| 2 | eu3h.1 |
. . . 4
| |
| 3 | 2 | eumo0 2085 |
. . 3
|
| 4 | 1, 3 | jca 306 |
. 2
|
| 5 | 2 | nfi 1485 |
. . . . 5
|
| 6 | 5 | mo23 2095 |
. . . 4
|
| 7 | 6 | anim2i 342 |
. . 3
|
| 8 | 5 | eu2 2098 |
. . 3
|
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | 4, 9 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 |
| This theorem is referenced by: eu3 2100 mo2r 2106 2eu4 2147 |
| Copyright terms: Public domain | W3C validator |