Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3h Unicode version

Theorem eu3h 2042
 Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
Hypothesis
Ref Expression
eu3h.1
Assertion
Ref Expression
eu3h
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem eu3h
StepHypRef Expression
1 euex 2027 . . 3
2 eu3h.1 . . . 4
32eumo0 2028 . . 3
41, 3jca 304 . 2
52nfi 1438 . . . . 5
65mo23 2038 . . . 4
76anim2i 339 . . 3
85eu2 2041 . . 3
97, 8sylibr 133 . 2
104, 9impbii 125 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104  wal 1329  wex 1468  wsb 1735  weu 1997 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-eu 2000 This theorem is referenced by:  eu3  2043  mo2r  2049  2eu4  2090
 Copyright terms: Public domain W3C validator