Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eu3h | Unicode version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eu3h.1 |
Ref | Expression |
---|---|
eu3h |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2044 | . . 3 | |
2 | eu3h.1 | . . . 4 | |
3 | 2 | eumo0 2045 | . . 3 |
4 | 1, 3 | jca 304 | . 2 |
5 | 2 | nfi 1450 | . . . . 5 |
6 | 5 | mo23 2055 | . . . 4 |
7 | 6 | anim2i 340 | . . 3 |
8 | 5 | eu2 2058 | . . 3 |
9 | 7, 8 | sylibr 133 | . 2 |
10 | 4, 9 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wsb 1750 weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: eu3 2060 mo2r 2066 2eu4 2107 |
Copyright terms: Public domain | W3C validator |