ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3h Unicode version

Theorem eu3h 2071
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
Hypothesis
Ref Expression
eu3h.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
eu3h  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem eu3h
StepHypRef Expression
1 euex 2056 . . 3  |-  ( E! x ph  ->  E. x ph )
2 eu3h.1 . . . 4  |-  ( ph  ->  A. y ph )
32eumo0 2057 . . 3  |-  ( E! x ph  ->  E. y A. x ( ph  ->  x  =  y ) )
41, 3jca 306 . 2  |-  ( E! x ph  ->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
52nfi 1462 . . . . 5  |-  F/ y
ph
65mo23 2067 . . . 4  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
76anim2i 342 . . 3  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  ( E. x ph  /\  A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
85eu2 2070 . . 3  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
97, 8sylibr 134 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  E! x ph )
104, 9impbii 126 1  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351   E.wex 1492   [wsb 1762   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029
This theorem is referenced by:  eu3  2072  mo2r  2078  2eu4  2119
  Copyright terms: Public domain W3C validator