![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu3 | GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eu3.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
eu3 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1530 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | eu3h 2087 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 Ⅎwnf 1471 ∃wex 1503 ∃!weu 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 |
This theorem is referenced by: eqeu 2930 reu3 2950 eunex 4593 |
Copyright terms: Public domain | W3C validator |