ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3 GIF version

Theorem eu3 2124
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu3.1 𝑦𝜑
Assertion
Ref Expression
eu3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu3
StepHypRef Expression
1 eu3.1 . . 3 𝑦𝜑
21nfri 1565 . 2 (𝜑 → ∀𝑦𝜑)
32eu3h 2123 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393  wnf 1506  wex 1538  ∃!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080
This theorem is referenced by:  eqeu  2973  reu3  2993  eunex  4652
  Copyright terms: Public domain W3C validator