![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eu3 | GIF version |
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eu3.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
eu3 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu3.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfri 1519 | . 2 ⊢ (𝜑 → ∀𝑦𝜑) |
3 | 2 | eu3h 2071 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 Ⅎwnf 1460 ∃wex 1492 ∃!weu 2026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 |
This theorem is referenced by: eqeu 2909 reu3 2929 eunex 4562 |
Copyright terms: Public domain | W3C validator |