ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eu3 GIF version

Theorem eu3 1994
Description: An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
Hypothesis
Ref Expression
eu3.1 𝑦𝜑
Assertion
Ref Expression
eu3 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem eu3
StepHypRef Expression
1 eu3.1 . . 3 𝑦𝜑
21nfri 1457 . 2 (𝜑 → ∀𝑦𝜑)
32eu3h 1993 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1287  wnf 1394  wex 1426  ∃!weu 1948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-eu 1951
This theorem is referenced by:  eqeu  2783  reu3  2803  eunex  4367
  Copyright terms: Public domain W3C validator