ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eunex Unicode version

Theorem eunex 4578
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
eunex  |-  ( E! x ph  ->  E. x  -.  ph )

Proof of Theorem eunex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . 3  |-  F/ y
ph
21eu3 2084 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
3 dtruex 4576 . . . . 5  |-  E. x  -.  x  =  y
4 nfa1 1552 . . . . . 6  |-  F/ x A. x ( ph  ->  x  =  y )
5 sp 1522 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  y )  -> 
( ph  ->  x  =  y ) )
65con3d 632 . . . . . 6  |-  ( A. x ( ph  ->  x  =  y )  -> 
( -.  x  =  y  ->  -.  ph )
)
74, 6eximd 1623 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x  -.  x  =  y  ->  E. x  -.  ph )
)
83, 7mpi 15 . . . 4  |-  ( A. x ( ph  ->  x  =  y )  ->  E. x  -.  ph )
98exlimiv 1609 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E. x  -.  ph )
109adantl 277 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  E. x  -.  ph )
112, 10sylbi 121 1  |-  ( E! x ph  ->  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator