| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eunex | Unicode version | ||
| Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| eunex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . 3
| |
| 2 | 1 | eu3 2091 |
. 2
|
| 3 | dtruex 4595 |
. . . . 5
| |
| 4 | nfa1 1555 |
. . . . . 6
| |
| 5 | sp 1525 |
. . . . . . 7
| |
| 6 | 5 | con3d 632 |
. . . . . 6
|
| 7 | 4, 6 | eximd 1626 |
. . . . 5
|
| 8 | 3, 7 | mpi 15 |
. . . 4
|
| 9 | 8 | exlimiv 1612 |
. . 3
|
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 2, 10 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |