ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eunex Unicode version

Theorem eunex 4608
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
eunex  |-  ( E! x ph  ->  E. x  -.  ph )

Proof of Theorem eunex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1550 . . 3  |-  F/ y
ph
21eu3 2099 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
3 dtruex 4606 . . . . 5  |-  E. x  -.  x  =  y
4 nfa1 1563 . . . . . 6  |-  F/ x A. x ( ph  ->  x  =  y )
5 sp 1533 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  y )  -> 
( ph  ->  x  =  y ) )
65con3d 632 . . . . . 6  |-  ( A. x ( ph  ->  x  =  y )  -> 
( -.  x  =  y  ->  -.  ph )
)
74, 6eximd 1634 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x  -.  x  =  y  ->  E. x  -.  ph )
)
83, 7mpi 15 . . . 4  |-  ( A. x ( ph  ->  x  =  y )  ->  E. x  -.  ph )
98exlimiv 1620 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E. x  -.  ph )
109adantl 277 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  E. x  -.  ph )
112, 10sylbi 121 1  |-  ( E! x ph  ->  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1370    = wceq 1372   E.wex 1514   E!weu 2053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator