ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eunex Unicode version

Theorem eunex 4652
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
eunex  |-  ( E! x ph  ->  E. x  -.  ph )

Proof of Theorem eunex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1574 . . 3  |-  F/ y
ph
21eu3 2124 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
3 dtruex 4650 . . . . 5  |-  E. x  -.  x  =  y
4 nfa1 1587 . . . . . 6  |-  F/ x A. x ( ph  ->  x  =  y )
5 sp 1557 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  y )  -> 
( ph  ->  x  =  y ) )
65con3d 634 . . . . . 6  |-  ( A. x ( ph  ->  x  =  y )  -> 
( -.  x  =  y  ->  -.  ph )
)
74, 6eximd 1658 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x  -.  x  =  y  ->  E. x  -.  ph )
)
83, 7mpi 15 . . . 4  |-  ( A. x ( ph  ->  x  =  y )  ->  E. x  -.  ph )
98exlimiv 1644 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E. x  -.  ph )
109adantl 277 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  E. x  -.  ph )
112, 10sylbi 121 1  |-  ( E! x ph  ->  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395   E.wex 1538   E!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator