ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eunex Unicode version

Theorem eunex 4484
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
eunex  |-  ( E! x ph  ->  E. x  -.  ph )

Proof of Theorem eunex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1509 . . 3  |-  F/ y
ph
21eu3 2046 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
3 dtruex 4482 . . . . 5  |-  E. x  -.  x  =  y
4 nfa1 1522 . . . . . 6  |-  F/ x A. x ( ph  ->  x  =  y )
5 sp 1489 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  y )  -> 
( ph  ->  x  =  y ) )
65con3d 621 . . . . . 6  |-  ( A. x ( ph  ->  x  =  y )  -> 
( -.  x  =  y  ->  -.  ph )
)
74, 6eximd 1592 . . . . 5  |-  ( A. x ( ph  ->  x  =  y )  -> 
( E. x  -.  x  =  y  ->  E. x  -.  ph )
)
83, 7mpi 15 . . . 4  |-  ( A. x ( ph  ->  x  =  y )  ->  E. x  -.  ph )
98exlimiv 1578 . . 3  |-  ( E. y A. x (
ph  ->  x  =  y )  ->  E. x  -.  ph )
109adantl 275 . 2  |-  ( ( E. x ph  /\  E. y A. x (
ph  ->  x  =  y ) )  ->  E. x  -.  ph )
112, 10sylbi 120 1  |-  ( E! x ph  ->  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332   E.wex 1469   E!weu 2000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator