Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reu3 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
reu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurex 2679 | . . 3 | |
2 | reu6 2915 | . . . 4 | |
3 | biimp 117 | . . . . . 6 | |
4 | 3 | ralimi 2529 | . . . . 5 |
5 | 4 | reximi 2563 | . . . 4 |
6 | 2, 5 | sylbi 120 | . . 3 |
7 | 1, 6 | jca 304 | . 2 |
8 | rexex 2512 | . . . 4 | |
9 | 8 | anim2i 340 | . . 3 |
10 | nfv 1516 | . . . . 5 | |
11 | 10 | eu3 2060 | . . . 4 |
12 | df-reu 2451 | . . . 4 | |
13 | df-rex 2450 | . . . . 5 | |
14 | df-ral 2449 | . . . . . . 7 | |
15 | impexp 261 | . . . . . . . 8 | |
16 | 15 | albii 1458 | . . . . . . 7 |
17 | 14, 16 | bitr4i 186 | . . . . . 6 |
18 | 17 | exbii 1593 | . . . . 5 |
19 | 13, 18 | anbi12i 456 | . . . 4 |
20 | 11, 12, 19 | 3bitr4i 211 | . . 3 |
21 | 9, 20 | sylibr 133 | . 2 |
22 | 7, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 weu 2014 wcel 2136 wral 2444 wrex 2445 wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-cleq 2158 df-clel 2161 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 |
This theorem is referenced by: reu7 2921 bdreu 13747 |
Copyright terms: Public domain | W3C validator |