| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu3 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurex 2750 |
. . 3
| |
| 2 | reu6 2992 |
. . . 4
| |
| 3 | biimp 118 |
. . . . . 6
| |
| 4 | 3 | ralimi 2593 |
. . . . 5
|
| 5 | 4 | reximi 2627 |
. . . 4
|
| 6 | 2, 5 | sylbi 121 |
. . 3
|
| 7 | 1, 6 | jca 306 |
. 2
|
| 8 | rexex 2576 |
. . . 4
| |
| 9 | 8 | anim2i 342 |
. . 3
|
| 10 | nfv 1574 |
. . . . 5
| |
| 11 | 10 | eu3 2124 |
. . . 4
|
| 12 | df-reu 2515 |
. . . 4
| |
| 13 | df-rex 2514 |
. . . . 5
| |
| 14 | df-ral 2513 |
. . . . . . 7
| |
| 15 | impexp 263 |
. . . . . . . 8
| |
| 16 | 15 | albii 1516 |
. . . . . . 7
|
| 17 | 14, 16 | bitr4i 187 |
. . . . . 6
|
| 18 | 17 | exbii 1651 |
. . . . 5
|
| 19 | 13, 18 | anbi12i 460 |
. . . 4
|
| 20 | 11, 12, 19 | 3bitr4i 212 |
. . 3
|
| 21 | 9, 20 | sylibr 134 |
. 2
|
| 22 | 7, 21 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-cleq 2222 df-clel 2225 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 |
| This theorem is referenced by: reu7 2998 bdreu 16176 |
| Copyright terms: Public domain | W3C validator |