Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reu3 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
reu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurex 2683 | . . 3 | |
2 | reu6 2919 | . . . 4 | |
3 | biimp 117 | . . . . . 6 | |
4 | 3 | ralimi 2533 | . . . . 5 |
5 | 4 | reximi 2567 | . . . 4 |
6 | 2, 5 | sylbi 120 | . . 3 |
7 | 1, 6 | jca 304 | . 2 |
8 | rexex 2516 | . . . 4 | |
9 | 8 | anim2i 340 | . . 3 |
10 | nfv 1521 | . . . . 5 | |
11 | 10 | eu3 2065 | . . . 4 |
12 | df-reu 2455 | . . . 4 | |
13 | df-rex 2454 | . . . . 5 | |
14 | df-ral 2453 | . . . . . . 7 | |
15 | impexp 261 | . . . . . . . 8 | |
16 | 15 | albii 1463 | . . . . . . 7 |
17 | 14, 16 | bitr4i 186 | . . . . . 6 |
18 | 17 | exbii 1598 | . . . . 5 |
19 | 13, 18 | anbi12i 457 | . . . 4 |
20 | 11, 12, 19 | 3bitr4i 211 | . . 3 |
21 | 9, 20 | sylibr 133 | . 2 |
22 | 7, 21 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 weu 2019 wcel 2141 wral 2448 wrex 2449 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-cleq 2163 df-clel 2166 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 |
This theorem is referenced by: reu7 2925 bdreu 13890 |
Copyright terms: Public domain | W3C validator |