ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupick Unicode version

Theorem eupick 2105
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing  x such that 
ph is true, and there is also an  x (actually the same one) such that  ph and  ps are both true, then  ph implies  ps regardless of  x. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
eupick  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )

Proof of Theorem eupick
StepHypRef Expression
1 eumo 2058 . 2  |-  ( E! x ph  ->  E* x ph )
2 mopick 2104 . 2  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
31, 2sylan 283 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492   E!weu 2026   E*wmo 2027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by:  eupicka  2106  eupickb  2107  reupick  3420  reupick3  3421  copsexg  4245  eusv2nf  4457  funssres  5259  oprabid  5907  txcn  13778
  Copyright terms: Public domain W3C validator