Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eupick | Unicode version |
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing such that is true, and there is also an (actually the same one) such that and are both true, then implies regardless of . This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
eupick |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2051 | . 2 | |
2 | mopick 2097 | . 2 | |
3 | 1, 2 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1485 weu 2019 wmo 2020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: eupicka 2099 eupickb 2100 reupick 3411 reupick3 3412 copsexg 4229 eusv2nf 4441 funssres 5240 oprabid 5885 txcn 13069 |
Copyright terms: Public domain | W3C validator |