ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupick Unicode version

Theorem eupick 2093
Description: Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing  x such that 
ph is true, and there is also an  x (actually the same one) such that  ph and  ps are both true, then  ph implies  ps regardless of  x. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
eupick  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )

Proof of Theorem eupick
StepHypRef Expression
1 eumo 2046 . 2  |-  ( E! x ph  ->  E* x ph )
2 mopick 2092 . 2  |-  ( ( E* x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
31, 2sylan 281 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wex 1480   E!weu 2014   E*wmo 2015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018
This theorem is referenced by:  eupicka  2094  eupickb  2095  reupick  3406  reupick3  3407  copsexg  4222  eusv2nf  4434  funssres  5230  oprabid  5874  txcn  12915
  Copyright terms: Public domain W3C validator