ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickb Unicode version

Theorem eupickb 2136
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eupickb  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph 
<->  ps ) )

Proof of Theorem eupickb
StepHypRef Expression
1 eupick 2134 . . 3  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
213adant2 1019 . 2  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
3 3simpc 999 . . 3  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( E! x ps  /\  E. x ( ph  /\  ps ) ) )
4 pm3.22 265 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ps  /\  ph ) )
54eximi 1624 . . . 4  |-  ( E. x ( ph  /\  ps )  ->  E. x
( ps  /\  ph ) )
65anim2i 342 . . 3  |-  ( ( E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( E! x ps  /\  E. x ( ps  /\  ph ) ) )
7 eupick 2134 . . 3  |-  ( ( E! x ps  /\  E. x ( ps  /\  ph ) )  ->  ( ps  ->  ph ) )
83, 6, 73syl 17 . 2  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ps  ->  ph ) )
92, 8impbid 129 1  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   E.wex 1516   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator