ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickb Unicode version

Theorem eupickb 2107
Description: Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eupickb  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph 
<->  ps ) )

Proof of Theorem eupickb
StepHypRef Expression
1 eupick 2105 . . 3  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
213adant2 1016 . 2  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
3 3simpc 996 . . 3  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( E! x ps  /\  E. x ( ph  /\  ps ) ) )
4 pm3.22 265 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ps  /\  ph ) )
54eximi 1600 . . . 4  |-  ( E. x ( ph  /\  ps )  ->  E. x
( ps  /\  ph ) )
65anim2i 342 . . 3  |-  ( ( E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( E! x ps  /\  E. x ( ps  /\  ph ) ) )
7 eupick 2105 . . 3  |-  ( ( E! x ps  /\  E. x ( ps  /\  ph ) )  ->  ( ps  ->  ph ) )
83, 6, 73syl 17 . 2  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ps  ->  ph ) )
92, 8impbid 129 1  |-  ( ( E! x ph  /\  E! x ps  /\  E. x ( ph  /\  ps ) )  ->  ( ph 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978   E.wex 1492   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator