ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickbi Unicode version

Theorem eupickbi 2160
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  A. x ( ph  ->  ps ) ) )

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 2158 . . 3  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
21ex 115 . 2  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  ->  A. x
( ph  ->  ps )
) )
3 hba1 1586 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  A. x A. x ( ph  ->  ps ) )
4 ancl 318 . . . . . . 7  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ( ph  /\ 
ps ) ) )
5 simpl 109 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ph )
64, 5impbid1 142 . . . . . 6  |-  ( (
ph  ->  ps )  -> 
( ph  <->  ( ph  /\  ps ) ) )
76sps 1583 . . . . 5  |-  ( A. x ( ph  ->  ps )  ->  ( ph  <->  (
ph  /\  ps )
) )
83, 7eubidh 2083 . . . 4  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ph  <->  E! x ( ph  /\ 
ps ) ) )
9 euex 2107 . . . 4  |-  ( E! x ( ph  /\  ps )  ->  E. x
( ph  /\  ps )
)
108, 9biimtrdi 163 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( E! x ph  ->  E. x
( ph  /\  ps )
) )
1110com12 30 . 2  |-  ( E! x ph  ->  ( A. x ( ph  ->  ps )  ->  E. x
( ph  /\  ps )
) )
122, 11impbid 129 1  |-  ( E! x ph  ->  ( E. x ( ph  /\  ps )  <->  A. x ( ph  ->  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393   E.wex 1538   E!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator