Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eupickbi | Unicode version |
Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
eupickbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupicka 2099 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | hba1 1533 | . . . . 5 | |
4 | ancl 316 | . . . . . . 7 | |
5 | simpl 108 | . . . . . . 7 | |
6 | 4, 5 | impbid1 141 | . . . . . 6 |
7 | 6 | sps 1530 | . . . . 5 |
8 | 3, 7 | eubidh 2025 | . . . 4 |
9 | euex 2049 | . . . 4 | |
10 | 8, 9 | syl6bi 162 | . . 3 |
11 | 10 | com12 30 | . 2 |
12 | 2, 11 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |