ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn Unicode version

Theorem euabsn 3674
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )

Proof of Theorem euabsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3673 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 nfv 1538 . . 3  |-  F/ y { x  |  ph }  =  { x }
3 nfab1 2331 . . . 4  |-  F/_ x { x  |  ph }
43nfeq1 2339 . . 3  |-  F/ x { x  |  ph }  =  { y }
5 sneq 3615 . . . 4  |-  ( x  =  y  ->  { x }  =  { y } )
65eqeq2d 2199 . . 3  |-  ( x  =  y  ->  ( { x  |  ph }  =  { x }  <->  { x  |  ph }  =  {
y } ) )
72, 4, 6cbvex 1766 . 2  |-  ( E. x { x  | 
ph }  =  {
x }  <->  E. y { x  |  ph }  =  { y } )
81, 7bitr4i 187 1  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1363   E.wex 1502   E!weu 2036   {cab 2173   {csn 3604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sn 3610
This theorem is referenced by:  eusn  3678  args  5009  mapsn  6703
  Copyright terms: Public domain W3C validator