ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euabsn Unicode version

Theorem euabsn 3677
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
Assertion
Ref Expression
euabsn  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )

Proof of Theorem euabsn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3676 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 nfv 1539 . . 3  |-  F/ y { x  |  ph }  =  { x }
3 nfab1 2334 . . . 4  |-  F/_ x { x  |  ph }
43nfeq1 2342 . . 3  |-  F/ x { x  |  ph }  =  { y }
5 sneq 3618 . . . 4  |-  ( x  =  y  ->  { x }  =  { y } )
65eqeq2d 2201 . . 3  |-  ( x  =  y  ->  ( { x  |  ph }  =  { x }  <->  { x  |  ph }  =  {
y } ) )
72, 4, 6cbvex 1767 . 2  |-  ( E. x { x  | 
ph }  =  {
x }  <->  E. y { x  |  ph }  =  { y } )
81, 7bitr4i 187 1  |-  ( E! x ph  <->  E. x { x  |  ph }  =  { x } )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1503   E!weu 2038   {cab 2175   {csn 3607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-sn 3613
This theorem is referenced by:  eusn  3681  args  5012  mapsn  6708
  Copyright terms: Public domain W3C validator