Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsnt | Unicode version |
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsnt.1 | |
rabsnt.2 |
Ref | Expression |
---|---|
rabsnt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnt.1 | . . . 4 | |
2 | 1 | snid 3607 | . . 3 |
3 | id 19 | . . 3 | |
4 | 2, 3 | eleqtrrid 2256 | . 2 |
5 | rabsnt.2 | . . . 4 | |
6 | 5 | elrab 2882 | . . 3 |
7 | 6 | simprbi 273 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wcel 2136 crab 2448 cvv 2726 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-sn 3582 |
This theorem is referenced by: ontr2exmid 4502 onsucsssucexmid 4504 ordsoexmid 4539 unfiexmid 6883 |
Copyright terms: Public domain | W3C validator |