ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsnt Unicode version

Theorem rabsnt 3697
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1  |-  B  e. 
_V
rabsnt.2  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rabsnt  |-  ( { x  e.  A  |  ph }  =  { B }  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4  |-  B  e. 
_V
21snid 3653 . . 3  |-  B  e. 
{ B }
3 id 19 . . 3  |-  ( { x  e.  A  |  ph }  =  { B }  ->  { x  e.  A  |  ph }  =  { B } )
42, 3eleqtrrid 2286 . 2  |-  ( { x  e.  A  |  ph }  =  { B }  ->  B  e.  {
x  e.  A  |  ph } )
5 rabsnt.2 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
65elrab 2920 . . 3  |-  ( B  e.  { x  e.  A  |  ph }  <->  ( B  e.  A  /\  ps ) )
76simprbi 275 . 2  |-  ( B  e.  { x  e.  A  |  ph }  ->  ps )
84, 7syl 14 1  |-  ( { x  e.  A  |  ph }  =  { B }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-sn 3628
This theorem is referenced by:  ontr2exmid  4561  onsucsssucexmid  4563  ordsoexmid  4598  unfiexmid  6979
  Copyright terms: Public domain W3C validator