Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsnt | Unicode version |
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabsnt.1 | |
rabsnt.2 |
Ref | Expression |
---|---|
rabsnt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnt.1 | . . . 4 | |
2 | 1 | snid 3592 | . . 3 |
3 | id 19 | . . 3 | |
4 | 2, 3 | eleqtrrid 2247 | . 2 |
5 | rabsnt.2 | . . . 4 | |
6 | 5 | elrab 2868 | . . 3 |
7 | 6 | simprbi 273 | . 2 |
8 | 4, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wcel 2128 crab 2439 cvv 2712 csn 3561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-sn 3567 |
This theorem is referenced by: ontr2exmid 4486 onsucsssucexmid 4488 ordsoexmid 4523 unfiexmid 6864 |
Copyright terms: Public domain | W3C validator |