ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsnt Unicode version

Theorem rabsnt 3741
Description: Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
rabsnt.1  |-  B  e. 
_V
rabsnt.2  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rabsnt  |-  ( { x  e.  A  |  ph }  =  { B }  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rabsnt
StepHypRef Expression
1 rabsnt.1 . . . 4  |-  B  e. 
_V
21snid 3697 . . 3  |-  B  e. 
{ B }
3 id 19 . . 3  |-  ( { x  e.  A  |  ph }  =  { B }  ->  { x  e.  A  |  ph }  =  { B } )
42, 3eleqtrrid 2319 . 2  |-  ( { x  e.  A  |  ph }  =  { B }  ->  B  e.  {
x  e.  A  |  ph } )
5 rabsnt.2 . . . 4  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
65elrab 2959 . . 3  |-  ( B  e.  { x  e.  A  |  ph }  <->  ( B  e.  A  /\  ps ) )
76simprbi 275 . 2  |-  ( B  e.  { x  e.  A  |  ph }  ->  ps )
84, 7syl 14 1  |-  ( { x  e.  A  |  ph }  =  { B }  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-sn 3672
This theorem is referenced by:  ontr2exmid  4617  onsucsssucexmid  4619  ordsoexmid  4654  unfiexmid  7080
  Copyright terms: Public domain W3C validator