ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz Unicode version

Theorem uzsubsubfz 10243
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9728 . . 3  |-  ( L  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L ) )
2 eluz2 9728 . . . 4  |-  ( N  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )
3 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
4 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
54adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  N  e.  ZZ )
6 zsubcl 9487 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  -  M
)  e.  ZZ )
76adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( L  -  M )  e.  ZZ )
85, 7zsubcld 9574 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( N  -  ( L  -  M
) )  e.  ZZ )
93, 5, 83jca 1201 . . . . . . . . . . . 12  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
109ex 115 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
11103adant3 1041 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1211com12 30 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
1312adantr 276 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1413imp 124 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
15 zre 9450 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
1615adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
1716adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  N  e.  RR )
18 zre 9450 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
1918adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  L  e.  RR )
2019adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  L  e.  RR )
2117, 20subge0d 8682 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  -> 
( 0  <_  ( N  -  L )  <->  L  <_  N ) )
2221exbiri 382 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  ( L  <_  N  ->  0  <_  ( N  -  L
) ) ) )
2322com23 78 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L
) ) ) )
24233impia 1224 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  (
( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L ) ) )
2524impcom 125 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( N  -  L )
)
26 zre 9450 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  RR )
2726adantr 276 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  RR )
2827adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  RR )
29 resubcl 8410 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( N  -  L
)  e.  RR )
3015, 18, 29syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  L
)  e.  RR )
31303adant3 1041 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  L )  e.  RR )
3231adantl 277 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  L )  e.  RR )
3328, 32addge02d 8681 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( N  -  L
)  <->  M  <_  ( ( N  -  L )  +  M ) ) )
3425, 33mpbid 147 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  (
( N  -  L
)  +  M ) )
35 zcn 9451 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
36353ad2ant2 1043 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  CC )
3736adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  CC )
38 zcn 9451 . . . . . . . . . . . 12  |-  ( L  e.  ZZ  ->  L  e.  CC )
39383ad2ant1 1042 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  CC )
4039adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  L  e.  CC )
41 zcn 9451 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 276 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  CC )
4342adantr 276 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  CC )
4437, 40, 43subsubd 8485 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  =  ( ( N  -  L
)  +  M ) )
4534, 44breqtrrd 4111 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  ( N  -  ( L  -  M ) ) )
46183ad2ant1 1042 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  RR )
47 subge0 8622 . . . . . . . . . . . . 13  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( L  -  M )  <->  M  <_  L ) )
4846, 26, 47syl2anr 290 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  M  <_  L ) )
4948exbiri 382 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  <_  L  ->  0  <_  ( L  -  M ) ) ) )
5049com23 78 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  <_  L  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
0  <_  ( L  -  M ) ) ) )
5150imp31 256 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( L  -  M )
)
52153ad2ant2 1043 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  RR )
5352adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  RR )
54 resubcl 8410 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  -  M
)  e.  RR )
5546, 27, 54syl2anr 290 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( L  -  M )  e.  RR )
5653, 55subge02d 8684 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  ( N  -  ( L  -  M
) )  <_  N
) )
5751, 56mpbid 147 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  <_  N
)
5845, 57jca 306 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  <_ 
( N  -  ( L  -  M )
)  /\  ( N  -  ( L  -  M ) )  <_  N ) )
59 elfz2 10211 . . . . . . 7  |-  ( ( N  -  ( L  -  M ) )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ )  /\  ( M  <_  ( N  -  ( L  -  M
) )  /\  ( N  -  ( L  -  M ) )  <_  N ) ) )
6014, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  e.  ( M ... N ) )
6160ex 115 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
62613adant2 1040 . . . 4  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
632, 62biimtrid 152 . . 3  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
641, 63sylbi 121 . 2  |-  ( L  e.  ( ZZ>= `  M
)  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
6564imp 124 1  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999    + caddc 8002    <_ cle 8182    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  uzsubsubfz1  10244
  Copyright terms: Public domain W3C validator