ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz Unicode version

Theorem uzsubsubfz 10113
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9598 . . 3  |-  ( L  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L ) )
2 eluz2 9598 . . . 4  |-  ( N  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )
3 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
4 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
54adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  N  e.  ZZ )
6 zsubcl 9358 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  -  M
)  e.  ZZ )
76adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( L  -  M )  e.  ZZ )
85, 7zsubcld 9444 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( N  -  ( L  -  M
) )  e.  ZZ )
93, 5, 83jca 1179 . . . . . . . . . . . 12  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
109ex 115 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
11103adant3 1019 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1211com12 30 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
1312adantr 276 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1413imp 124 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
15 zre 9321 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
1615adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
1716adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  N  e.  RR )
18 zre 9321 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
1918adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  L  e.  RR )
2019adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  L  e.  RR )
2117, 20subge0d 8554 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  -> 
( 0  <_  ( N  -  L )  <->  L  <_  N ) )
2221exbiri 382 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  ( L  <_  N  ->  0  <_  ( N  -  L
) ) ) )
2322com23 78 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L
) ) ) )
24233impia 1202 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  (
( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L ) ) )
2524impcom 125 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( N  -  L )
)
26 zre 9321 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  RR )
2726adantr 276 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  RR )
2827adantr 276 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  RR )
29 resubcl 8283 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( N  -  L
)  e.  RR )
3015, 18, 29syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  L
)  e.  RR )
31303adant3 1019 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  L )  e.  RR )
3231adantl 277 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  L )  e.  RR )
3328, 32addge02d 8553 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( N  -  L
)  <->  M  <_  ( ( N  -  L )  +  M ) ) )
3425, 33mpbid 147 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  (
( N  -  L
)  +  M ) )
35 zcn 9322 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
36353ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  CC )
3736adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  CC )
38 zcn 9322 . . . . . . . . . . . 12  |-  ( L  e.  ZZ  ->  L  e.  CC )
39383ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  CC )
4039adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  L  e.  CC )
41 zcn 9322 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 276 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  CC )
4342adantr 276 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  CC )
4437, 40, 43subsubd 8358 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  =  ( ( N  -  L
)  +  M ) )
4534, 44breqtrrd 4057 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  ( N  -  ( L  -  M ) ) )
46183ad2ant1 1020 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  RR )
47 subge0 8494 . . . . . . . . . . . . 13  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( L  -  M )  <->  M  <_  L ) )
4846, 26, 47syl2anr 290 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  M  <_  L ) )
4948exbiri 382 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  <_  L  ->  0  <_  ( L  -  M ) ) ) )
5049com23 78 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  <_  L  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
0  <_  ( L  -  M ) ) ) )
5150imp31 256 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( L  -  M )
)
52153ad2ant2 1021 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  RR )
5352adantl 277 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  RR )
54 resubcl 8283 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  -  M
)  e.  RR )
5546, 27, 54syl2anr 290 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( L  -  M )  e.  RR )
5653, 55subge02d 8556 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  ( N  -  ( L  -  M
) )  <_  N
) )
5751, 56mpbid 147 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  <_  N
)
5845, 57jca 306 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  <_ 
( N  -  ( L  -  M )
)  /\  ( N  -  ( L  -  M ) )  <_  N ) )
59 elfz2 10081 . . . . . . 7  |-  ( ( N  -  ( L  -  M ) )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ )  /\  ( M  <_  ( N  -  ( L  -  M
) )  /\  ( N  -  ( L  -  M ) )  <_  N ) ) )
6014, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  e.  ( M ... N ) )
6160ex 115 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
62613adant2 1018 . . . 4  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
632, 62biimtrid 152 . . 3  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
641, 63sylbi 121 . 2  |-  ( L  e.  ( ZZ>= `  M
)  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
6564imp 124 1  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872    + caddc 7875    <_ cle 8055    - cmin 8190   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  uzsubsubfz1  10114
  Copyright terms: Public domain W3C validator