ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz Unicode version

Theorem uzsubsubfz 9782
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9288 . . 3  |-  ( L  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L ) )
2 eluz2 9288 . . . 4  |-  ( N  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )
3 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
4 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
54adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  N  e.  ZZ )
6 zsubcl 9053 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  -  M
)  e.  ZZ )
76adantlr 468 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( L  -  M )  e.  ZZ )
85, 7zsubcld 9136 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( N  -  ( L  -  M
) )  e.  ZZ )
93, 5, 83jca 1146 . . . . . . . . . . . 12  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
109ex 114 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
11103adant3 986 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1211com12 30 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
1312adantr 274 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1413imp 123 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
15 zre 9016 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
1615adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
1716adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  N  e.  RR )
18 zre 9016 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
1918adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  L  e.  RR )
2019adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  L  e.  RR )
2117, 20subge0d 8264 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  -> 
( 0  <_  ( N  -  L )  <->  L  <_  N ) )
2221exbiri 379 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  ( L  <_  N  ->  0  <_  ( N  -  L
) ) ) )
2322com23 78 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L
) ) ) )
24233impia 1163 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  (
( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L ) ) )
2524impcom 124 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( N  -  L )
)
26 zre 9016 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  RR )
2726adantr 274 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  RR )
2827adantr 274 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  RR )
29 resubcl 7994 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( N  -  L
)  e.  RR )
3015, 18, 29syl2anr 288 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  L
)  e.  RR )
31303adant3 986 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  L )  e.  RR )
3231adantl 275 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  L )  e.  RR )
3328, 32addge02d 8263 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( N  -  L
)  <->  M  <_  ( ( N  -  L )  +  M ) ) )
3425, 33mpbid 146 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  (
( N  -  L
)  +  M ) )
35 zcn 9017 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
36353ad2ant2 988 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  CC )
3736adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  CC )
38 zcn 9017 . . . . . . . . . . . 12  |-  ( L  e.  ZZ  ->  L  e.  CC )
39383ad2ant1 987 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  CC )
4039adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  L  e.  CC )
41 zcn 9017 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 274 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  CC )
4342adantr 274 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  CC )
4437, 40, 43subsubd 8069 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  =  ( ( N  -  L
)  +  M ) )
4534, 44breqtrrd 3926 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  ( N  -  ( L  -  M ) ) )
46183ad2ant1 987 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  RR )
47 subge0 8205 . . . . . . . . . . . . 13  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( L  -  M )  <->  M  <_  L ) )
4846, 26, 47syl2anr 288 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  M  <_  L ) )
4948exbiri 379 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  <_  L  ->  0  <_  ( L  -  M ) ) ) )
5049com23 78 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  <_  L  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
0  <_  ( L  -  M ) ) ) )
5150imp31 254 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( L  -  M )
)
52153ad2ant2 988 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  RR )
5352adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  RR )
54 resubcl 7994 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  -  M
)  e.  RR )
5546, 27, 54syl2anr 288 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( L  -  M )  e.  RR )
5653, 55subge02d 8266 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  ( N  -  ( L  -  M
) )  <_  N
) )
5751, 56mpbid 146 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  <_  N
)
5845, 57jca 304 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  <_ 
( N  -  ( L  -  M )
)  /\  ( N  -  ( L  -  M ) )  <_  N ) )
59 elfz2 9752 . . . . . . 7  |-  ( ( N  -  ( L  -  M ) )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ )  /\  ( M  <_  ( N  -  ( L  -  M
) )  /\  ( N  -  ( L  -  M ) )  <_  N ) ) )
6014, 58, 59sylanbrc 413 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  e.  ( M ... N ) )
6160ex 114 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
62613adant2 985 . . . 4  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
632, 62syl5bi 151 . . 3  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
641, 63sylbi 120 . 2  |-  ( L  e.  ( ZZ>= `  M
)  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
6564imp 123 1  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    e. wcel 1465   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   0cc0 7588    + caddc 7591    <_ cle 7769    - cmin 7901   ZZcz 9012   ZZ>=cuz 9282   ...cfz 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8685  df-n0 8936  df-z 9013  df-uz 9283  df-fz 9746
This theorem is referenced by:  uzsubsubfz1  9783
  Copyright terms: Public domain W3C validator