ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsubsubfz Unicode version

Theorem uzsubsubfz 9982
Description: Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
Assertion
Ref Expression
uzsubsubfz  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )

Proof of Theorem uzsubsubfz
StepHypRef Expression
1 eluz2 9472 . . 3  |-  ( L  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L ) )
2 eluz2 9472 . . . 4  |-  ( N  e.  ( ZZ>= `  L
)  <->  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )
3 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
4 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
54adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  N  e.  ZZ )
6 zsubcl 9232 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ZZ  /\  M  e.  ZZ )  ->  ( L  -  M
)  e.  ZZ )
76adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( L  -  M )  e.  ZZ )
85, 7zsubcld 9318 . . . . . . . . . . . . 13  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( N  -  ( L  -  M
) )  e.  ZZ )
93, 5, 83jca 1167 . . . . . . . . . . . 12  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  M  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
109ex 114 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
11103adant3 1007 . . . . . . . . . 10  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1211com12 30 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M )
)  e.  ZZ ) ) )
1312adantr 274 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) ) )
1413imp 123 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ ) )
15 zre 9195 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ZZ  ->  N  e.  RR )
1615adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
1716adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  N  e.  RR )
18 zre 9195 . . . . . . . . . . . . . . . . 17  |-  ( L  e.  ZZ  ->  L  e.  RR )
1918adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  L  e.  RR )
2019adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  ->  L  e.  RR )
2117, 20subge0d 8433 . . . . . . . . . . . . . 14  |-  ( ( ( L  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  e.  ZZ  /\  M  <_  L ) )  -> 
( 0  <_  ( N  -  L )  <->  L  <_  N ) )
2221exbiri 380 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  ( L  <_  N  ->  0  <_  ( N  -  L
) ) ) )
2322com23 78 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( L  <_  N  ->  ( ( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L
) ) ) )
24233impia 1190 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  (
( M  e.  ZZ  /\  M  <_  L )  ->  0  <_  ( N  -  L ) ) )
2524impcom 124 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( N  -  L )
)
26 zre 9195 . . . . . . . . . . . . 13  |-  ( M  e.  ZZ  ->  M  e.  RR )
2726adantr 274 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  RR )
2827adantr 274 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  RR )
29 resubcl 8162 . . . . . . . . . . . . . 14  |-  ( ( N  e.  RR  /\  L  e.  RR )  ->  ( N  -  L
)  e.  RR )
3015, 18, 29syl2anr 288 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  -  L
)  e.  RR )
31303adant3 1007 . . . . . . . . . . . 12  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  L )  e.  RR )
3231adantl 275 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  L )  e.  RR )
3328, 32addge02d 8432 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( N  -  L
)  <->  M  <_  ( ( N  -  L )  +  M ) ) )
3425, 33mpbid 146 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  (
( N  -  L
)  +  M ) )
35 zcn 9196 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
36353ad2ant2 1009 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  CC )
3736adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  CC )
38 zcn 9196 . . . . . . . . . . . 12  |-  ( L  e.  ZZ  ->  L  e.  CC )
39383ad2ant1 1008 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  CC )
4039adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  L  e.  CC )
41 zcn 9196 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  M  e.  CC )
4241adantr 274 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  <_  L )  ->  M  e.  CC )
4342adantr 274 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  e.  CC )
4437, 40, 43subsubd 8237 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  =  ( ( N  -  L
)  +  M ) )
4534, 44breqtrrd 4010 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  M  <_  ( N  -  ( L  -  M ) ) )
46183ad2ant1 1008 . . . . . . . . . . . . 13  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  L  e.  RR )
47 subge0 8373 . . . . . . . . . . . . 13  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( L  -  M )  <->  M  <_  L ) )
4846, 26, 47syl2anr 288 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  M  <_  L ) )
4948exbiri 380 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( M  <_  L  ->  0  <_  ( L  -  M ) ) ) )
5049com23 78 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  <_  L  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
0  <_  ( L  -  M ) ) ) )
5150imp31 254 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  0  <_  ( L  -  M )
)
52153ad2ant2 1009 . . . . . . . . . . 11  |-  ( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  N  e.  RR )
5352adantl 275 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  N  e.  RR )
54 resubcl 8162 . . . . . . . . . . 11  |-  ( ( L  e.  RR  /\  M  e.  RR )  ->  ( L  -  M
)  e.  RR )
5546, 27, 54syl2anr 288 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( L  -  M )  e.  RR )
5653, 55subge02d 8435 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( 0  <_ 
( L  -  M
)  <->  ( N  -  ( L  -  M
) )  <_  N
) )
5751, 56mpbid 146 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  <_  N
)
5845, 57jca 304 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( M  <_ 
( N  -  ( L  -  M )
)  /\  ( N  -  ( L  -  M ) )  <_  N ) )
59 elfz2 9951 . . . . . . 7  |-  ( ( N  -  ( L  -  M ) )  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  ( L  -  M ) )  e.  ZZ )  /\  ( M  <_  ( N  -  ( L  -  M
) )  /\  ( N  -  ( L  -  M ) )  <_  N ) ) )
6014, 58, 59sylanbrc 414 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  <_  L )  /\  ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N ) )  ->  ( N  -  ( L  -  M
) )  e.  ( M ... N ) )
6160ex 114 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  <_  L )  -> 
( ( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
62613adant2 1006 . . . 4  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  (
( L  e.  ZZ  /\  N  e.  ZZ  /\  L  <_  N )  -> 
( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
632, 62syl5bi 151 . . 3  |-  ( ( M  e.  ZZ  /\  L  e.  ZZ  /\  M  <_  L )  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) ) )
641, 63sylbi 120 . 2  |-  ( L  e.  ( ZZ>= `  M
)  ->  ( N  e.  ( ZZ>= `  L )  ->  ( N  -  ( L  -  M )
)  e.  ( M ... N ) ) )
6564imp 123 1  |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L )
)  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753    + caddc 7756    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  uzsubsubfz1  9983
  Copyright terms: Public domain W3C validator