ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf Unicode version

Theorem addccncf 13380
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
Assertion
Ref Expression
addccncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem addccncf
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3167 . 2  |-  CC  C_  CC
2 addcl 7899 . . . . 5  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( x  +  A
)  e.  CC )
32ancoms 266 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  +  A
)  e.  CC )
4 addccncf.1 . . . 4  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
53, 4fmptd 5650 . . 3  |-  ( A  e.  CC  ->  F : CC --> CC )
6 simpr 109 . . . 4  |-  ( ( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
76a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
)
8 oveq1 5860 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  +  A )  =  ( y  +  A ) )
9 simprll 532 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
y  e.  CC )
10 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  ->  A  e.  CC )
119, 10addcld 7939 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( y  +  A
)  e.  CC )
124, 8, 9, 11fvmptd3 5589 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  y
)  =  ( y  +  A ) )
13 oveq1 5860 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  A )  =  ( z  +  A ) )
14 simprlr 533 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
z  e.  CC )
1514, 10addcld 7939 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( z  +  A
)  e.  CC )
164, 13, 14, 15fvmptd3 5589 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  z
)  =  ( z  +  A ) )
1712, 16oveq12d 5871 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( ( y  +  A )  -  ( z  +  A ) ) )
189, 14, 10pnpcan2d 8268 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( y  +  A )  -  (
z  +  A ) )  =  ( y  -  z ) )
1917, 18eqtrd 2203 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( y  -  z ) )
2019fveq2d 5500 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  =  ( abs `  ( y  -  z
) ) )
2120breq1d 3999 . . . 4  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w  <->  ( abs `  ( y  -  z
) )  <  w
) )
2221exbiri 380 . . 3  |-  ( A  e.  CC  ->  (
( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w ) ) )
235, 7, 22elcncf1di 13360 . 2  |-  ( A  e.  CC  ->  (
( CC  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( CC
-cn-> CC ) ) )
241, 1, 23mp2ani 430 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772    + caddc 7777    < clt 7954    - cmin 8090   RR+crp 9610   abscabs 10961   -cn->ccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-sub 8092  df-cncf 13352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator