ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf Unicode version

Theorem addccncf 15268
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
Assertion
Ref Expression
addccncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem addccncf
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3244 . 2  |-  CC  C_  CC
2 addcl 8120 . . . . 5  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( x  +  A
)  e.  CC )
32ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  +  A
)  e.  CC )
4 addccncf.1 . . . 4  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
53, 4fmptd 5788 . . 3  |-  ( A  e.  CC  ->  F : CC --> CC )
6 simpr 110 . . . 4  |-  ( ( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
76a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
)
8 oveq1 6007 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  +  A )  =  ( y  +  A ) )
9 simprll 537 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
y  e.  CC )
10 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  ->  A  e.  CC )
119, 10addcld 8162 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( y  +  A
)  e.  CC )
124, 8, 9, 11fvmptd3 5727 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  y
)  =  ( y  +  A ) )
13 oveq1 6007 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  A )  =  ( z  +  A ) )
14 simprlr 538 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
z  e.  CC )
1514, 10addcld 8162 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( z  +  A
)  e.  CC )
164, 13, 14, 15fvmptd3 5727 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  z
)  =  ( z  +  A ) )
1712, 16oveq12d 6018 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( ( y  +  A )  -  ( z  +  A ) ) )
189, 14, 10pnpcan2d 8491 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( y  +  A )  -  (
z  +  A ) )  =  ( y  -  z ) )
1917, 18eqtrd 2262 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( y  -  z ) )
2019fveq2d 5630 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  =  ( abs `  ( y  -  z
) ) )
2120breq1d 4092 . . . 4  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w  <->  ( abs `  ( y  -  z
) )  <  w
) )
2221exbiri 382 . . 3  |-  ( A  e.  CC  ->  (
( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w ) ) )
235, 7, 22elcncf1di 15247 . 2  |-  ( A  e.  CC  ->  (
( CC  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( CC
-cn-> CC ) ) )
241, 1, 23mp2ani 432 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   CCcc 7993    + caddc 7998    < clt 8177    - cmin 8313   RR+crp 9845   abscabs 11503   -cn->ccncf 15238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-map 6795  df-sub 8315  df-cncf 15239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator