ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf Unicode version

Theorem addccncf 14754
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
Assertion
Ref Expression
addccncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem addccncf
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3199 . 2  |-  CC  C_  CC
2 addcl 7997 . . . . 5  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( x  +  A
)  e.  CC )
32ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  +  A
)  e.  CC )
4 addccncf.1 . . . 4  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
53, 4fmptd 5712 . . 3  |-  ( A  e.  CC  ->  F : CC --> CC )
6 simpr 110 . . . 4  |-  ( ( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
76a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
)
8 oveq1 5925 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  +  A )  =  ( y  +  A ) )
9 simprll 537 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
y  e.  CC )
10 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  ->  A  e.  CC )
119, 10addcld 8039 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( y  +  A
)  e.  CC )
124, 8, 9, 11fvmptd3 5651 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  y
)  =  ( y  +  A ) )
13 oveq1 5925 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  A )  =  ( z  +  A ) )
14 simprlr 538 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
z  e.  CC )
1514, 10addcld 8039 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( z  +  A
)  e.  CC )
164, 13, 14, 15fvmptd3 5651 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  z
)  =  ( z  +  A ) )
1712, 16oveq12d 5936 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( ( y  +  A )  -  ( z  +  A ) ) )
189, 14, 10pnpcan2d 8368 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( y  +  A )  -  (
z  +  A ) )  =  ( y  -  z ) )
1917, 18eqtrd 2226 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( y  -  z ) )
2019fveq2d 5558 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  =  ( abs `  ( y  -  z
) ) )
2120breq1d 4039 . . . 4  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w  <->  ( abs `  ( y  -  z
) )  <  w
) )
2221exbiri 382 . . 3  |-  ( A  e.  CC  ->  (
( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w ) ) )
235, 7, 22elcncf1di 14734 . 2  |-  ( A  e.  CC  ->  (
( CC  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( CC
-cn-> CC ) ) )
241, 1, 23mp2ani 432 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870    + caddc 7875    < clt 8054    - cmin 8190   RR+crp 9719   abscabs 11141   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-sub 8192  df-cncf 14726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator