| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addccncf | Unicode version | ||
| Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| addccncf.1 |
|
| Ref | Expression |
|---|---|
| addccncf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 |
. 2
| |
| 2 | addcl 8049 |
. . . . 5
| |
| 3 | 2 | ancoms 268 |
. . . 4
|
| 4 | addccncf.1 |
. . . 4
| |
| 5 | 3, 4 | fmptd 5733 |
. . 3
|
| 6 | simpr 110 |
. . . 4
| |
| 7 | 6 | a1i 9 |
. . 3
|
| 8 | oveq1 5950 |
. . . . . . . . 9
| |
| 9 | simprll 537 |
. . . . . . . . 9
| |
| 10 | simpl 109 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | addcld 8091 |
. . . . . . . . 9
|
| 12 | 4, 8, 9, 11 | fvmptd3 5672 |
. . . . . . . 8
|
| 13 | oveq1 5950 |
. . . . . . . . 9
| |
| 14 | simprlr 538 |
. . . . . . . . 9
| |
| 15 | 14, 10 | addcld 8091 |
. . . . . . . . 9
|
| 16 | 4, 13, 14, 15 | fvmptd3 5672 |
. . . . . . . 8
|
| 17 | 12, 16 | oveq12d 5961 |
. . . . . . 7
|
| 18 | 9, 14, 10 | pnpcan2d 8420 |
. . . . . . 7
|
| 19 | 17, 18 | eqtrd 2237 |
. . . . . 6
|
| 20 | 19 | fveq2d 5579 |
. . . . 5
|
| 21 | 20 | breq1d 4053 |
. . . 4
|
| 22 | 21 | exbiri 382 |
. . 3
|
| 23 | 5, 7, 22 | elcncf1di 14993 |
. 2
|
| 24 | 1, 1, 23 | mp2ani 432 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-map 6736 df-sub 8244 df-cncf 14985 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |