ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addccncf Unicode version

Theorem addccncf 15147
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
addccncf.1  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
Assertion
Ref Expression
addccncf  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem addccncf
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3217 . 2  |-  CC  C_  CC
2 addcl 8070 . . . . 5  |-  ( ( x  e.  CC  /\  A  e.  CC )  ->  ( x  +  A
)  e.  CC )
32ancoms 268 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  +  A
)  e.  CC )
4 addccncf.1 . . . 4  |-  F  =  ( x  e.  CC  |->  ( x  +  A
) )
53, 4fmptd 5747 . . 3  |-  ( A  e.  CC  ->  F : CC --> CC )
6 simpr 110 . . . 4  |-  ( ( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
76a1i 9 . . 3  |-  ( A  e.  CC  ->  (
( y  e.  CC  /\  w  e.  RR+ )  ->  w  e.  RR+ )
)
8 oveq1 5964 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  +  A )  =  ( y  +  A ) )
9 simprll 537 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
y  e.  CC )
10 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  ->  A  e.  CC )
119, 10addcld 8112 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( y  +  A
)  e.  CC )
124, 8, 9, 11fvmptd3 5686 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  y
)  =  ( y  +  A ) )
13 oveq1 5964 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  +  A )  =  ( z  +  A ) )
14 simprlr 538 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
z  e.  CC )
1514, 10addcld 8112 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( z  +  A
)  e.  CC )
164, 13, 14, 15fvmptd3 5686 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( F `  z
)  =  ( z  +  A ) )
1712, 16oveq12d 5975 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( ( y  +  A )  -  ( z  +  A ) ) )
189, 14, 10pnpcan2d 8441 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( y  +  A )  -  (
z  +  A ) )  =  ( y  -  z ) )
1917, 18eqtrd 2239 . . . . . 6  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( F `  y )  -  ( F `  z )
)  =  ( y  -  z ) )
2019fveq2d 5593 . . . . 5  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  =  ( abs `  ( y  -  z
) ) )
2120breq1d 4061 . . . 4  |-  ( ( A  e.  CC  /\  ( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w  <->  ( abs `  ( y  -  z
) )  <  w
) )
2221exbiri 382 . . 3  |-  ( A  e.  CC  ->  (
( ( y  e.  CC  /\  z  e.  CC )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( F `  y
)  -  ( F `
 z ) ) )  <  w ) ) )
235, 7, 22elcncf1di 15126 . 2  |-  ( A  e.  CC  ->  (
( CC  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( CC
-cn-> CC ) ) )
241, 1, 23mp2ani 432 1  |-  ( A  e.  CC  ->  F  e.  ( CC -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    C_ wss 3170   class class class wbr 4051    |-> cmpt 4113   ` cfv 5280  (class class class)co 5957   CCcc 7943    + caddc 7948    < clt 8127    - cmin 8263   RR+crp 9795   abscabs 11383   -cn->ccncf 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-map 6750  df-sub 8265  df-cncf 15118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator