Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addccncf | Unicode version |
Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
addccncf.1 |
Ref | Expression |
---|---|
addccncf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . 2 | |
2 | addcl 7878 | . . . . 5 | |
3 | 2 | ancoms 266 | . . . 4 |
4 | addccncf.1 | . . . 4 | |
5 | 3, 4 | fmptd 5639 | . . 3 |
6 | simpr 109 | . . . 4 | |
7 | 6 | a1i 9 | . . 3 |
8 | oveq1 5849 | . . . . . . . . 9 | |
9 | simprll 527 | . . . . . . . . 9 | |
10 | simpl 108 | . . . . . . . . . 10 | |
11 | 9, 10 | addcld 7918 | . . . . . . . . 9 |
12 | 4, 8, 9, 11 | fvmptd3 5579 | . . . . . . . 8 |
13 | oveq1 5849 | . . . . . . . . 9 | |
14 | simprlr 528 | . . . . . . . . 9 | |
15 | 14, 10 | addcld 7918 | . . . . . . . . 9 |
16 | 4, 13, 14, 15 | fvmptd3 5579 | . . . . . . . 8 |
17 | 12, 16 | oveq12d 5860 | . . . . . . 7 |
18 | 9, 14, 10 | pnpcan2d 8247 | . . . . . . 7 |
19 | 17, 18 | eqtrd 2198 | . . . . . 6 |
20 | 19 | fveq2d 5490 | . . . . 5 |
21 | 20 | breq1d 3992 | . . . 4 |
22 | 21 | exbiri 380 | . . 3 |
23 | 5, 7, 22 | elcncf1di 13206 | . 2 |
24 | 1, 1, 23 | mp2ani 429 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wss 3116 class class class wbr 3982 cmpt 4043 cfv 5188 (class class class)co 5842 cc 7751 caddc 7756 clt 7933 cmin 8069 crp 9589 cabs 10939 ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-map 6616 df-sub 8071 df-cncf 13198 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |