Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lbreu | Unicode version |
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
Ref | Expression |
---|---|
lbreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3993 | . . . . . . . . 9 | |
2 | 1 | rspcv 2830 | . . . . . . . 8 |
3 | breq2 3993 | . . . . . . . . 9 | |
4 | 3 | rspcv 2830 | . . . . . . . 8 |
5 | 2, 4 | im2anan9r 594 | . . . . . . 7 |
6 | ssel 3141 | . . . . . . . . . . . 12 | |
7 | ssel 3141 | . . . . . . . . . . . 12 | |
8 | 6, 7 | anim12d 333 | . . . . . . . . . . 11 |
9 | 8 | impcom 124 | . . . . . . . . . 10 |
10 | letri3 8000 | . . . . . . . . . 10 | |
11 | 9, 10 | syl 14 | . . . . . . . . 9 |
12 | 11 | exbiri 380 | . . . . . . . 8 |
13 | 12 | com23 78 | . . . . . . 7 |
14 | 5, 13 | syld 45 | . . . . . 6 |
15 | 14 | com3r 79 | . . . . 5 |
16 | 15 | ralrimivv 2551 | . . . 4 |
17 | 16 | anim2i 340 | . . 3 |
18 | 17 | ancoms 266 | . 2 |
19 | breq1 3992 | . . . 4 | |
20 | 19 | ralbidv 2470 | . . 3 |
21 | 20 | reu4 2924 | . 2 |
22 | 18, 21 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 wral 2448 wrex 2449 wreu 2450 wss 3121 class class class wbr 3989 cr 7773 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-pre-ltirr 7886 ax-pre-apti 7889 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 |
This theorem is referenced by: lbcl 8862 lble 8863 |
Copyright terms: Public domain | W3C validator |