| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lbreu | Unicode version | ||
| Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
| Ref | Expression |
|---|---|
| lbreu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4087 |
. . . . . . . . 9
| |
| 2 | 1 | rspcv 2903 |
. . . . . . . 8
|
| 3 | breq2 4087 |
. . . . . . . . 9
| |
| 4 | 3 | rspcv 2903 |
. . . . . . . 8
|
| 5 | 2, 4 | im2anan9r 601 |
. . . . . . 7
|
| 6 | ssel 3218 |
. . . . . . . . . . . 12
| |
| 7 | ssel 3218 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | anim12d 335 |
. . . . . . . . . . 11
|
| 9 | 8 | impcom 125 |
. . . . . . . . . 10
|
| 10 | letri3 8227 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . 9
|
| 12 | 11 | exbiri 382 |
. . . . . . . 8
|
| 13 | 12 | com23 78 |
. . . . . . 7
|
| 14 | 5, 13 | syld 45 |
. . . . . 6
|
| 15 | 14 | com3r 79 |
. . . . 5
|
| 16 | 15 | ralrimivv 2611 |
. . . 4
|
| 17 | 16 | anim2i 342 |
. . 3
|
| 18 | 17 | ancoms 268 |
. 2
|
| 19 | breq1 4086 |
. . . 4
| |
| 20 | 19 | ralbidv 2530 |
. . 3
|
| 21 | 20 | reu4 2997 |
. 2
|
| 22 | 18, 21 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 ax-pre-apti 8114 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: lbcl 9093 lble 9094 |
| Copyright terms: Public domain | W3C validator |