ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbreu Unicode version

Theorem lbreu 8964
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Distinct variable group:    x, y, S

Proof of Theorem lbreu
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4033 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  <_  y  <->  x  <_  w ) )
21rspcv 2860 . . . . . . . 8  |-  ( w  e.  S  ->  ( A. y  e.  S  x  <_  y  ->  x  <_  w ) )
3 breq2 4033 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  <_  y  <->  w  <_  x ) )
43rspcv 2860 . . . . . . . 8  |-  ( x  e.  S  ->  ( A. y  e.  S  w  <_  y  ->  w  <_  x ) )
52, 4im2anan9r 599 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( x  <_  w  /\  w  <_  x ) ) )
6 ssel 3173 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( x  e.  S  ->  x  e.  RR ) )
7 ssel 3173 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( w  e.  S  ->  w  e.  RR ) )
86, 7anim12d 335 . . . . . . . . . . 11  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( x  e.  RR  /\  w  e.  RR ) ) )
98impcom 125 . . . . . . . . . 10  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  e.  RR  /\  w  e.  RR ) )
10 letri3 8100 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  =  w  <-> 
( x  <_  w  /\  w  <_  x ) ) )
119, 10syl 14 . . . . . . . . 9  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  =  w  <->  ( x  <_  w  /\  w  <_  x
) ) )
1211exbiri 382 . . . . . . . 8  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( S  C_  RR  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  x  =  w ) ) )
1312com23 78 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
145, 13syld 45 . . . . . 6  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
1514com3r 79 . . . . 5  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  x  =  w ) ) )
1615ralrimivv 2575 . . . 4  |-  ( S 
C_  RR  ->  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) )
1716anim2i 342 . . 3  |-  ( ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  S  C_  RR )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
1817ancoms 268 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
19 breq1 4032 . . . 4  |-  ( x  =  w  ->  (
x  <_  y  <->  w  <_  y ) )
2019ralbidv 2494 . . 3  |-  ( x  =  w  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  w  <_  y ) )
2120reu4 2954 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  <->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) ) )
2218, 21sylibr 134 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   A.wral 2472   E.wrex 2473   E!wreu 2474    C_ wss 3153   class class class wbr 4029   RRcr 7871    <_ cle 8055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060
This theorem is referenced by:  lbcl  8965  lble  8966
  Copyright terms: Public domain W3C validator