ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbreu Unicode version

Theorem lbreu 8613
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Distinct variable group:    x, y, S

Proof of Theorem lbreu
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 3899 . . . . . . . . 9  |-  ( y  =  w  ->  (
x  <_  y  <->  x  <_  w ) )
21rspcv 2756 . . . . . . . 8  |-  ( w  e.  S  ->  ( A. y  e.  S  x  <_  y  ->  x  <_  w ) )
3 breq2 3899 . . . . . . . . 9  |-  ( y  =  x  ->  (
w  <_  y  <->  w  <_  x ) )
43rspcv 2756 . . . . . . . 8  |-  ( x  e.  S  ->  ( A. y  e.  S  w  <_  y  ->  w  <_  x ) )
52, 4im2anan9r 571 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( x  <_  w  /\  w  <_  x ) ) )
6 ssel 3057 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( x  e.  S  ->  x  e.  RR ) )
7 ssel 3057 . . . . . . . . . . . 12  |-  ( S 
C_  RR  ->  ( w  e.  S  ->  w  e.  RR ) )
86, 7anim12d 331 . . . . . . . . . . 11  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( x  e.  RR  /\  w  e.  RR ) ) )
98impcom 124 . . . . . . . . . 10  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  e.  RR  /\  w  e.  RR ) )
10 letri3 7768 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  RR )  ->  ( x  =  w  <-> 
( x  <_  w  /\  w  <_  x ) ) )
119, 10syl 14 . . . . . . . . 9  |-  ( ( ( x  e.  S  /\  w  e.  S
)  /\  S  C_  RR )  ->  ( x  =  w  <->  ( x  <_  w  /\  w  <_  x
) ) )
1211exbiri 377 . . . . . . . 8  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( S  C_  RR  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  x  =  w ) ) )
1312com23 78 . . . . . . 7  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( x  <_  w  /\  w  <_  x
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
145, 13syld 45 . . . . . 6  |-  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  ( S  C_  RR  ->  x  =  w ) ) )
1514com3r 79 . . . . 5  |-  ( S 
C_  RR  ->  ( ( x  e.  S  /\  w  e.  S )  ->  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y
)  ->  x  =  w ) ) )
1615ralrimivv 2487 . . . 4  |-  ( S 
C_  RR  ->  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) )
1716anim2i 337 . . 3  |-  ( ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  S  C_  RR )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
1817ancoms 266 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  (
( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w )
) )
19 breq1 3898 . . . 4  |-  ( x  =  w  ->  (
x  <_  y  <->  w  <_  y ) )
2019ralbidv 2411 . . 3  |-  ( x  =  w  ->  ( A. y  e.  S  x  <_  y  <->  A. y  e.  S  w  <_  y ) )
2120reu4 2847 . 2  |-  ( E! x  e.  S  A. y  e.  S  x  <_  y  <->  ( E. x  e.  S  A. y  e.  S  x  <_  y  /\  A. x  e.  S  A. w  e.  S  ( ( A. y  e.  S  x  <_  y  /\  A. y  e.  S  w  <_  y )  ->  x  =  w ) ) )
2218, 21sylibr 133 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  E! x  e.  S  A. y  e.  S  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   A.wral 2390   E.wrex 2391   E!wreu 2392    C_ wss 3037   class class class wbr 3895   RRcr 7546    <_ cle 7725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-pre-ltirr 7657  ax-pre-apti 7660
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-xp 4505  df-cnv 4507  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730
This theorem is referenced by:  lbcl  8614  lble  8615
  Copyright terms: Public domain W3C validator