Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lbreu | Unicode version |
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.) |
Ref | Expression |
---|---|
lbreu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3986 | . . . . . . . . 9 | |
2 | 1 | rspcv 2826 | . . . . . . . 8 |
3 | breq2 3986 | . . . . . . . . 9 | |
4 | 3 | rspcv 2826 | . . . . . . . 8 |
5 | 2, 4 | im2anan9r 589 | . . . . . . 7 |
6 | ssel 3136 | . . . . . . . . . . . 12 | |
7 | ssel 3136 | . . . . . . . . . . . 12 | |
8 | 6, 7 | anim12d 333 | . . . . . . . . . . 11 |
9 | 8 | impcom 124 | . . . . . . . . . 10 |
10 | letri3 7979 | . . . . . . . . . 10 | |
11 | 9, 10 | syl 14 | . . . . . . . . 9 |
12 | 11 | exbiri 380 | . . . . . . . 8 |
13 | 12 | com23 78 | . . . . . . 7 |
14 | 5, 13 | syld 45 | . . . . . 6 |
15 | 14 | com3r 79 | . . . . 5 |
16 | 15 | ralrimivv 2547 | . . . 4 |
17 | 16 | anim2i 340 | . . 3 |
18 | 17 | ancoms 266 | . 2 |
19 | breq1 3985 | . . . 4 | |
20 | 19 | ralbidv 2466 | . . 3 |
21 | 20 | reu4 2920 | . 2 |
22 | 18, 21 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wral 2444 wrex 2445 wreu 2446 wss 3116 class class class wbr 3982 cr 7752 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 ax-pre-apti 7868 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: lbcl 8841 lble 8842 |
Copyright terms: Public domain | W3C validator |