ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid Unicode version

Theorem cncfmptid 12752
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem cncfmptid
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3105 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
2 simpr 109 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
3 simpll 518 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  S  C_  T
)
4 simpr 109 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  S )
53, 4sseldd 3098 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  T )
65fmpttd 5575 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x ) : S --> T )
7 simpr 109 . . . 4  |-  ( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ )
87a1i 9 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ ) )
9 eqid 2139 . . . . . . . 8  |-  ( x  e.  S  |->  x )  =  ( x  e.  S  |->  x )
10 id 19 . . . . . . . 8  |-  ( x  =  y  ->  x  =  y )
11 simprll 526 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
y  e.  S )
129, 10, 11, 11fvmptd3 5514 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  y )  =  y )
13 id 19 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
14 simprlr 527 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
z  e.  S )
159, 13, 14, 14fvmptd3 5514 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  z )  =  z )
1612, 15oveq12d 5792 . . . . . 6  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  x ) `
 y )  -  ( ( x  e.  S  |->  x ) `  z ) )  =  ( y  -  z
) )
1716fveq2d 5425 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  =  ( abs `  (
y  -  z ) ) )
1817breq1d 3939 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w  <->  ( abs `  (
y  -  z ) )  <  w ) )
1918exbiri 379 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w ) ) )
206, 8, 19elcncf1di 12735 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) ) )
211, 2, 20mp2and 429 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480    C_ wss 3071   class class class wbr 3929    |-> cmpt 3989   ` cfv 5123  (class class class)co 5774   CCcc 7618    < clt 7800    - cmin 7933   RR+crp 9441   abscabs 10769   -cn->ccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-map 6544  df-cncf 12727
This theorem is referenced by:  expcncf  12761  dvcnp2cntop  12832
  Copyright terms: Public domain W3C validator