ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid Unicode version

Theorem cncfmptid 12496
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem cncfmptid
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3055 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
2 simpr 109 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
3 simpll 499 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  S  C_  T
)
4 simpr 109 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  S )
53, 4sseldd 3048 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  T )
65fmpttd 5507 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x ) : S --> T )
7 simpr 109 . . . 4  |-  ( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ )
87a1i 9 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ ) )
9 eqid 2100 . . . . . . . 8  |-  ( x  e.  S  |->  x )  =  ( x  e.  S  |->  x )
10 id 19 . . . . . . . 8  |-  ( x  =  y  ->  x  =  y )
11 simprll 507 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
y  e.  S )
129, 10, 11, 11fvmptd3 5446 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  y )  =  y )
13 id 19 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
14 simprlr 508 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
z  e.  S )
159, 13, 14, 14fvmptd3 5446 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  z )  =  z )
1612, 15oveq12d 5724 . . . . . 6  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  x ) `
 y )  -  ( ( x  e.  S  |->  x ) `  z ) )  =  ( y  -  z
) )
1716fveq2d 5357 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  =  ( abs `  (
y  -  z ) ) )
1817breq1d 3885 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w  <->  ( abs `  (
y  -  z ) )  <  w ) )
1918exbiri 377 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w ) ) )
206, 8, 19elcncf1di 12479 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) ) )
211, 2, 20mp2and 427 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1448    C_ wss 3021   class class class wbr 3875    |-> cmpt 3929   ` cfv 5059  (class class class)co 5706   CCcc 7498    < clt 7672    - cmin 7804   RR+crp 9291   abscabs 10609   -cn->ccncf 12470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-map 6474  df-cncf 12471
This theorem is referenced by:  expcncf  12504
  Copyright terms: Public domain W3C validator