ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid Unicode version

Theorem cncfmptid 15069
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem cncfmptid
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3201 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
2 simpr 110 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
3 simpll 527 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  S  C_  T
)
4 simpr 110 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  S )
53, 4sseldd 3194 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  T )
65fmpttd 5735 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x ) : S --> T )
7 simpr 110 . . . 4  |-  ( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ )
87a1i 9 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ ) )
9 eqid 2205 . . . . . . . 8  |-  ( x  e.  S  |->  x )  =  ( x  e.  S  |->  x )
10 id 19 . . . . . . . 8  |-  ( x  =  y  ->  x  =  y )
11 simprll 537 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
y  e.  S )
129, 10, 11, 11fvmptd3 5673 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  y )  =  y )
13 id 19 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
14 simprlr 538 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
z  e.  S )
159, 13, 14, 14fvmptd3 5673 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  z )  =  z )
1612, 15oveq12d 5962 . . . . . 6  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  x ) `
 y )  -  ( ( x  e.  S  |->  x ) `  z ) )  =  ( y  -  z
) )
1716fveq2d 5580 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  =  ( abs `  (
y  -  z ) ) )
1817breq1d 4054 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w  <->  ( abs `  (
y  -  z ) )  <  w ) )
1918exbiri 382 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w ) ) )
206, 8, 19elcncf1di 15051 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) ) )
211, 2, 20mp2and 433 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   ` cfv 5271  (class class class)co 5944   CCcc 7923    < clt 8107    - cmin 8243   RR+crp 9775   abscabs 11308   -cn->ccncf 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-map 6737  df-cncf 15043
This theorem is referenced by:  idcncf  15073  expcncf  15081  hovercncf  15118  dvcnp2cntop  15171
  Copyright terms: Public domain W3C validator