ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid Unicode version

Theorem cncfmptid 14776
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem cncfmptid
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3188 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
2 simpr 110 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
3 simpll 527 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  S  C_  T
)
4 simpr 110 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  S )
53, 4sseldd 3181 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  T )
65fmpttd 5714 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x ) : S --> T )
7 simpr 110 . . . 4  |-  ( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ )
87a1i 9 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ ) )
9 eqid 2193 . . . . . . . 8  |-  ( x  e.  S  |->  x )  =  ( x  e.  S  |->  x )
10 id 19 . . . . . . . 8  |-  ( x  =  y  ->  x  =  y )
11 simprll 537 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
y  e.  S )
129, 10, 11, 11fvmptd3 5652 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  y )  =  y )
13 id 19 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
14 simprlr 538 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
z  e.  S )
159, 13, 14, 14fvmptd3 5652 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  z )  =  z )
1612, 15oveq12d 5937 . . . . . 6  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  x ) `
 y )  -  ( ( x  e.  S  |->  x ) `  z ) )  =  ( y  -  z
) )
1716fveq2d 5559 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  =  ( abs `  (
y  -  z ) ) )
1817breq1d 4040 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w  <->  ( abs `  (
y  -  z ) )  <  w ) )
1918exbiri 382 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w ) ) )
206, 8, 19elcncf1di 14758 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) ) )
211, 2, 20mp2and 433 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    C_ wss 3154   class class class wbr 4030    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919   CCcc 7872    < clt 8056    - cmin 8192   RR+crp 9722   abscabs 11144   -cn->ccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706  df-cncf 14750
This theorem is referenced by:  idcncf  14780  expcncf  14788  hovercncf  14825  dvcnp2cntop  14878
  Copyright terms: Public domain W3C validator