ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptid Unicode version

Theorem cncfmptid 13124
Description: The identity function is a continuous function on  CC. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
cncfmptid  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Distinct variable groups:    x, S    x, T

Proof of Theorem cncfmptid
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr 3145 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  S  C_  CC )
2 simpr 109 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  ->  T  C_  CC )
3 simpll 519 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  S  C_  T
)
4 simpr 109 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  S )
53, 4sseldd 3138 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  x  e.  S
)  ->  x  e.  T )
65fmpttd 5634 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x ) : S --> T )
7 simpr 109 . . . 4  |-  ( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ )
87a1i 9 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( y  e.  S  /\  w  e.  RR+ )  ->  w  e.  RR+ ) )
9 eqid 2164 . . . . . . . 8  |-  ( x  e.  S  |->  x )  =  ( x  e.  S  |->  x )
10 id 19 . . . . . . . 8  |-  ( x  =  y  ->  x  =  y )
11 simprll 527 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
y  e.  S )
129, 10, 11, 11fvmptd3 5573 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  y )  =  y )
13 id 19 . . . . . . . 8  |-  ( x  =  z  ->  x  =  z )
14 simprlr 528 . . . . . . . 8  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
z  e.  S )
159, 13, 14, 14fvmptd3 5573 . . . . . . 7  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( x  e.  S  |->  x ) `  z )  =  z )
1612, 15oveq12d 5854 . . . . . 6  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( ( x  e.  S  |->  x ) `
 y )  -  ( ( x  e.  S  |->  x ) `  z ) )  =  ( y  -  z
) )
1716fveq2d 5484 . . . . 5  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  =  ( abs `  (
y  -  z ) ) )
1817breq1d 3986 . . . 4  |-  ( ( ( S  C_  T  /\  T  C_  CC )  /\  ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ ) )  -> 
( ( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w  <->  ( abs `  (
y  -  z ) )  <  w ) )
1918exbiri 380 . . 3  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( ( y  e.  S  /\  z  e.  S )  /\  w  e.  RR+ )  ->  (
( abs `  (
y  -  z ) )  <  w  -> 
( abs `  (
( ( x  e.  S  |->  x ) `  y )  -  (
( x  e.  S  |->  x ) `  z
) ) )  < 
w ) ) )
206, 8, 19elcncf1di 13107 . 2  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( ( S  C_  CC  /\  T  C_  CC )  ->  ( x  e.  S  |->  x )  e.  ( S -cn-> T ) ) )
211, 2, 20mp2and 430 1  |-  ( ( S  C_  T  /\  T  C_  CC )  -> 
( x  e.  S  |->  x )  e.  ( S -cn-> T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135    C_ wss 3111   class class class wbr 3976    |-> cmpt 4037   ` cfv 5182  (class class class)co 5836   CCcc 7742    < clt 7924    - cmin 8060   RR+crp 9580   abscabs 10925   -cn->ccncf 13098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-map 6607  df-cncf 13099
This theorem is referenced by:  expcncf  13133  dvcnp2cntop  13204
  Copyright terms: Public domain W3C validator