ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf Unicode version

Theorem negcncf 15279
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negcncf  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem negcncf
Dummy variables  e  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  CC  ->  A  C_  CC )
2 ssidd 3245 . 2  |-  ( A 
C_  CC  ->  CC  C_  CC )
3 ssel2 3219 . . . . 5  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
43negcld 8444 . . . 4  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  -u x  e.  CC )
5 negcncf.1 . . . 4  |-  F  =  ( x  e.  A  |-> 
-u x )
64, 5fmptd 5789 . . 3  |-  ( A 
C_  CC  ->  F : A
--> CC )
7 simpr 110 . . . 4  |-  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
87a1i 9 . . 3  |-  ( A 
C_  CC  ->  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
)
9 negeq 8339 . . . . . . . . . 10  |-  ( x  =  u  ->  -u x  =  -u u )
10 simprll 537 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  A )
11 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  A  C_  CC )
1211, 10sseldd 3225 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  CC )
1312negcld 8444 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u u  e.  CC )
145, 9, 10, 13fvmptd3 5728 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  u )  =  -u u )
15 negeq 8339 . . . . . . . . . 10  |-  ( x  =  v  ->  -u x  =  -u v )
16 simprlr 538 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  A )
1711, 16sseldd 3225 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  CC )
1817negcld 8444 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u v  e.  CC )
195, 15, 16, 18fvmptd3 5728 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  v )  =  -u v )
2014, 19oveq12d 6019 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( -u u  -  -u v ) )
2112, 17neg2subd 8474 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( -u u  -  -u v
)  =  ( v  -  u ) )
2220, 21eqtrd 2262 . . . . . . 7  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( v  -  u ) )
2322fveq2d 5631 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( v  -  u ) ) )
2417, 12abssubd 11704 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( v  -  u ) )  =  ( abs `  (
u  -  v ) ) )
2523, 24eqtrd 2262 . . . . 5  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( u  -  v ) ) )
2625breq1d 4093 . . . 4  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( abs `  (
( F `  u
)  -  ( F `
 v ) ) )  <  e  <->  ( abs `  ( u  -  v
) )  <  e
) )
2726exbiri 382 . . 3  |-  ( A 
C_  CC  ->  ( ( ( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ )  ->  ( ( abs `  ( u  -  v ) )  < 
e  ->  ( abs `  ( ( F `  u )  -  ( F `  v )
) )  <  e
) ) )
286, 8, 27elcncf1di 15253 . 2  |-  ( A 
C_  CC  ->  ( ( A  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( A -cn-> CC ) ) )
291, 2, 28mp2and 433 1  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001   CCcc 7997    < clt 8181    - cmin 8317   -ucneg 8318   RR+crp 9849   abscabs 11508   -cn->ccncf 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-map 6797  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-2 9169  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-cncf 15245
This theorem is referenced by:  negfcncf  15280
  Copyright terms: Public domain W3C validator