ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf Unicode version

Theorem negcncf 13382
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negcncf  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem negcncf
Dummy variables  e  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  CC  ->  A  C_  CC )
2 ssidd 3168 . 2  |-  ( A 
C_  CC  ->  CC  C_  CC )
3 ssel2 3142 . . . . 5  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
43negcld 8217 . . . 4  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  -u x  e.  CC )
5 negcncf.1 . . . 4  |-  F  =  ( x  e.  A  |-> 
-u x )
64, 5fmptd 5650 . . 3  |-  ( A 
C_  CC  ->  F : A
--> CC )
7 simpr 109 . . . 4  |-  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
87a1i 9 . . 3  |-  ( A 
C_  CC  ->  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
)
9 negeq 8112 . . . . . . . . . 10  |-  ( x  =  u  ->  -u x  =  -u u )
10 simprll 532 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  A )
11 simpl 108 . . . . . . . . . . . 12  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  A  C_  CC )
1211, 10sseldd 3148 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  CC )
1312negcld 8217 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u u  e.  CC )
145, 9, 10, 13fvmptd3 5589 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  u )  =  -u u )
15 negeq 8112 . . . . . . . . . 10  |-  ( x  =  v  ->  -u x  =  -u v )
16 simprlr 533 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  A )
1711, 16sseldd 3148 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  CC )
1817negcld 8217 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u v  e.  CC )
195, 15, 16, 18fvmptd3 5589 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  v )  =  -u v )
2014, 19oveq12d 5871 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( -u u  -  -u v ) )
2112, 17neg2subd 8247 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( -u u  -  -u v
)  =  ( v  -  u ) )
2220, 21eqtrd 2203 . . . . . . 7  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( v  -  u ) )
2322fveq2d 5500 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( v  -  u ) ) )
2417, 12abssubd 11157 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( v  -  u ) )  =  ( abs `  (
u  -  v ) ) )
2523, 24eqtrd 2203 . . . . 5  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( u  -  v ) ) )
2625breq1d 3999 . . . 4  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( abs `  (
( F `  u
)  -  ( F `
 v ) ) )  <  e  <->  ( abs `  ( u  -  v
) )  <  e
) )
2726exbiri 380 . . 3  |-  ( A 
C_  CC  ->  ( ( ( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ )  ->  ( ( abs `  ( u  -  v ) )  < 
e  ->  ( abs `  ( ( F `  u )  -  ( F `  v )
) )  <  e
) ) )
286, 8, 27elcncf1di 13360 . 2  |-  ( A 
C_  CC  ->  ( ( A  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( A -cn-> CC ) ) )
291, 2, 28mp2and 431 1  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772    < clt 7954    - cmin 8090   -ucneg 8091   RR+crp 9610   abscabs 10961   -cn->ccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  negfcncf  13383
  Copyright terms: Public domain W3C validator