ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf Unicode version

Theorem negcncf 14759
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negcncf  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem negcncf
Dummy variables  e  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  CC  ->  A  C_  CC )
2 ssidd 3200 . 2  |-  ( A 
C_  CC  ->  CC  C_  CC )
3 ssel2 3174 . . . . 5  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
43negcld 8317 . . . 4  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  -u x  e.  CC )
5 negcncf.1 . . . 4  |-  F  =  ( x  e.  A  |-> 
-u x )
64, 5fmptd 5712 . . 3  |-  ( A 
C_  CC  ->  F : A
--> CC )
7 simpr 110 . . . 4  |-  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
87a1i 9 . . 3  |-  ( A 
C_  CC  ->  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
)
9 negeq 8212 . . . . . . . . . 10  |-  ( x  =  u  ->  -u x  =  -u u )
10 simprll 537 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  A )
11 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  A  C_  CC )
1211, 10sseldd 3180 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  CC )
1312negcld 8317 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u u  e.  CC )
145, 9, 10, 13fvmptd3 5651 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  u )  =  -u u )
15 negeq 8212 . . . . . . . . . 10  |-  ( x  =  v  ->  -u x  =  -u v )
16 simprlr 538 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  A )
1711, 16sseldd 3180 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  CC )
1817negcld 8317 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u v  e.  CC )
195, 15, 16, 18fvmptd3 5651 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  v )  =  -u v )
2014, 19oveq12d 5936 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( -u u  -  -u v ) )
2112, 17neg2subd 8347 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( -u u  -  -u v
)  =  ( v  -  u ) )
2220, 21eqtrd 2226 . . . . . . 7  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( v  -  u ) )
2322fveq2d 5558 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( v  -  u ) ) )
2417, 12abssubd 11337 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( v  -  u ) )  =  ( abs `  (
u  -  v ) ) )
2523, 24eqtrd 2226 . . . . 5  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( u  -  v ) ) )
2625breq1d 4039 . . . 4  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( abs `  (
( F `  u
)  -  ( F `
 v ) ) )  <  e  <->  ( abs `  ( u  -  v
) )  <  e
) )
2726exbiri 382 . . 3  |-  ( A 
C_  CC  ->  ( ( ( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ )  ->  ( ( abs `  ( u  -  v ) )  < 
e  ->  ( abs `  ( ( F `  u )  -  ( F `  v )
) )  <  e
) ) )
286, 8, 27elcncf1di 14734 . 2  |-  ( A 
C_  CC  ->  ( ( A  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( A -cn-> CC ) ) )
291, 2, 28mp2and 433 1  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918   CCcc 7870    < clt 8054    - cmin 8190   -ucneg 8191   RR+crp 9719   abscabs 11141   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  negfcncf  14760
  Copyright terms: Public domain W3C validator