ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcncf Unicode version

Theorem negcncf 15192
Description: The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypothesis
Ref Expression
negcncf.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negcncf  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem negcncf
Dummy variables  e  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2  |-  ( A 
C_  CC  ->  A  C_  CC )
2 ssidd 3222 . 2  |-  ( A 
C_  CC  ->  CC  C_  CC )
3 ssel2 3196 . . . . 5  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
43negcld 8405 . . . 4  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  -u x  e.  CC )
5 negcncf.1 . . . 4  |-  F  =  ( x  e.  A  |-> 
-u x )
64, 5fmptd 5757 . . 3  |-  ( A 
C_  CC  ->  F : A
--> CC )
7 simpr 110 . . . 4  |-  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
87a1i 9 . . 3  |-  ( A 
C_  CC  ->  ( ( u  e.  A  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
)
9 negeq 8300 . . . . . . . . . 10  |-  ( x  =  u  ->  -u x  =  -u u )
10 simprll 537 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  A )
11 simpl 109 . . . . . . . . . . . 12  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  A  C_  CC )
1211, 10sseldd 3202 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  u  e.  CC )
1312negcld 8405 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u u  e.  CC )
145, 9, 10, 13fvmptd3 5696 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  u )  =  -u u )
15 negeq 8300 . . . . . . . . . 10  |-  ( x  =  v  ->  -u x  =  -u v )
16 simprlr 538 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  A )
1711, 16sseldd 3202 . . . . . . . . . . 11  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  v  e.  CC )
1817negcld 8405 . . . . . . . . . 10  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  -u v  e.  CC )
195, 15, 16, 18fvmptd3 5696 . . . . . . . . 9  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( F `  v )  =  -u v )
2014, 19oveq12d 5985 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( -u u  -  -u v ) )
2112, 17neg2subd 8435 . . . . . . . 8  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( -u u  -  -u v
)  =  ( v  -  u ) )
2220, 21eqtrd 2240 . . . . . . 7  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( F `  u
)  -  ( F `
 v ) )  =  ( v  -  u ) )
2322fveq2d 5603 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( v  -  u ) ) )
2417, 12abssubd 11619 . . . . . 6  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( v  -  u ) )  =  ( abs `  (
u  -  v ) ) )
2523, 24eqtrd 2240 . . . . 5  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  ( abs `  ( ( F `
 u )  -  ( F `  v ) ) )  =  ( abs `  ( u  -  v ) ) )
2625breq1d 4069 . . . 4  |-  ( ( A  C_  CC  /\  (
( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ ) )  ->  (
( abs `  (
( F `  u
)  -  ( F `
 v ) ) )  <  e  <->  ( abs `  ( u  -  v
) )  <  e
) )
2726exbiri 382 . . 3  |-  ( A 
C_  CC  ->  ( ( ( u  e.  A  /\  v  e.  A
)  /\  e  e.  RR+ )  ->  ( ( abs `  ( u  -  v ) )  < 
e  ->  ( abs `  ( ( F `  u )  -  ( F `  v )
) )  <  e
) ) )
286, 8, 27elcncf1di 15166 . 2  |-  ( A 
C_  CC  ->  ( ( A  C_  CC  /\  CC  C_  CC )  ->  F  e.  ( A -cn-> CC ) ) )
291, 2, 28mp2and 433 1  |-  ( A 
C_  CC  ->  F  e.  ( A -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   class class class wbr 4059    |-> cmpt 4121   ` cfv 5290  (class class class)co 5967   CCcc 7958    < clt 8142    - cmin 8278   -ucneg 8279   RR+crp 9810   abscabs 11423   -cn->ccncf 15157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-2 9130  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-cncf 15158
This theorem is referenced by:  negfcncf  15193
  Copyright terms: Public domain W3C validator