ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdifxor Unicode version

Theorem symdifxor 3403
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
symdifxor  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  { x  |  ( x  e.  A  \/_  x  e.  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem symdifxor
StepHypRef Expression
1 eldif 3140 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2 eldif 3140 . . . 4  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
31, 2orbi12i 764 . . 3  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( B 
\  A ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  \/  (
x  e.  B  /\  -.  x  e.  A
) ) )
4 elun 3278 . . 3  |-  ( x  e.  ( ( A 
\  B )  u.  ( B  \  A
) )  <->  ( x  e.  ( A  \  B
)  \/  x  e.  ( B  \  A
) ) )
5 excxor 1378 . . . 4  |-  ( ( x  e.  A  \/_  x  e.  B )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( -.  x  e.  A  /\  x  e.  B )
) )
6 ancom 266 . . . . 5  |-  ( ( -.  x  e.  A  /\  x  e.  B
)  <->  ( x  e.  B  /\  -.  x  e.  A ) )
76orbi2i 762 . . . 4  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( -.  x  e.  A  /\  x  e.  B )
)  <->  ( ( x  e.  A  /\  -.  x  e.  B )  \/  ( x  e.  B  /\  -.  x  e.  A
) ) )
85, 7bitri 184 . . 3  |-  ( ( x  e.  A  \/_  x  e.  B )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( x  e.  B  /\  -.  x  e.  A )
) )
93, 4, 83bitr4i 212 . 2  |-  ( x  e.  ( ( A 
\  B )  u.  ( B  \  A
) )  <->  ( x  e.  A  \/_  x  e.  B ) )
109abbi2i 2292 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  { x  |  ( x  e.  A  \/_  x  e.  B ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 708    = wceq 1353    \/_ wxo 1375    e. wcel 2148   {cab 2163    \ cdif 3128    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-xor 1376  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator