ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdifxor Unicode version

Theorem symdifxor 3388
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
symdifxor  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  { x  |  ( x  e.  A  \/_  x  e.  B ) }
Distinct variable groups:    x, A    x, B

Proof of Theorem symdifxor
StepHypRef Expression
1 eldif 3125 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
2 eldif 3125 . . . 4  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
31, 2orbi12i 754 . . 3  |-  ( ( x  e.  ( A 
\  B )  \/  x  e.  ( B 
\  A ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  \/  (
x  e.  B  /\  -.  x  e.  A
) ) )
4 elun 3263 . . 3  |-  ( x  e.  ( ( A 
\  B )  u.  ( B  \  A
) )  <->  ( x  e.  ( A  \  B
)  \/  x  e.  ( B  \  A
) ) )
5 excxor 1368 . . . 4  |-  ( ( x  e.  A  \/_  x  e.  B )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( -.  x  e.  A  /\  x  e.  B )
) )
6 ancom 264 . . . . 5  |-  ( ( -.  x  e.  A  /\  x  e.  B
)  <->  ( x  e.  B  /\  -.  x  e.  A ) )
76orbi2i 752 . . . 4  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( -.  x  e.  A  /\  x  e.  B )
)  <->  ( ( x  e.  A  /\  -.  x  e.  B )  \/  ( x  e.  B  /\  -.  x  e.  A
) ) )
85, 7bitri 183 . . 3  |-  ( ( x  e.  A  \/_  x  e.  B )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  \/  ( x  e.  B  /\  -.  x  e.  A )
) )
93, 4, 83bitr4i 211 . 2  |-  ( x  e.  ( ( A 
\  B )  u.  ( B  \  A
) )  <->  ( x  e.  A  \/_  x  e.  B ) )
109abbi2i 2281 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  { x  |  ( x  e.  A  \/_  x  e.  B ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    \/ wo 698    = wceq 1343    \/_ wxo 1365    e. wcel 2136   {cab 2151    \ cdif 3113    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-xor 1366  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator