ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp43 Unicode version

Theorem exp43 372
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp43.1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
Assertion
Ref Expression
exp43  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp43
StepHypRef Expression
1 exp43.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
21ex 115 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
32exp4b 367 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp53  377  funssres  5301  fvopab3ig  5636  fvmptt  5654  tfri3  6426  nnmordi  6575  fiintim  6993  ordiso2  7102  qaddcl  9711  qmulcl  9713  bernneq  10754  opnneissb  14401  txbas  14504
  Copyright terms: Public domain W3C validator