ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp43 Unicode version

Theorem exp43 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
exp43.1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
Assertion
Ref Expression
exp43  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp43
StepHypRef Expression
1 exp43.1 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  ->  ta )
21ex 114 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
32exp4b 362 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exp53  372  funssres  5133  fvopab3ig  5461  fvmptt  5478  tfri3  6230  nnmordi  6378  fiintim  6783  ordiso2  6886  qaddcl  9376  qmulcl  9378  bernneq  10352  opnneissb  12219  txbas  12322
  Copyright terms: Public domain W3C validator