ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneissb Unicode version

Theorem opnneissb 12313
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
opnneissb  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )

Proof of Theorem opnneissb
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7  |-  X  = 
U. J
21eltopss 12165 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  J )  ->  N  C_  X )
32adantr 274 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  N  C_  X )
4 ssid 3112 . . . . . . 7  |-  N  C_  N
5 sseq2 3116 . . . . . . . . 9  |-  ( g  =  N  ->  ( S  C_  g  <->  S  C_  N
) )
6 sseq1 3115 . . . . . . . . 9  |-  ( g  =  N  ->  (
g  C_  N  <->  N  C_  N
) )
75, 6anbi12d 464 . . . . . . . 8  |-  ( g  =  N  ->  (
( S  C_  g  /\  g  C_  N )  <-> 
( S  C_  N  /\  N  C_  N ) ) )
87rspcev 2784 . . . . . . 7  |-  ( ( N  e.  J  /\  ( S  C_  N  /\  N  C_  N ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
94, 8mpanr2 434 . . . . . 6  |-  ( ( N  e.  J  /\  S  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
109ad2ant2l 499 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
111isnei 12302 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1211ad2ant2r 500 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
133, 10, 12mpbir2and 928 . . . 4  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  N  e.  ( ( nei `  J
) `  S )
)
1413exp43 369 . . 3  |-  ( J  e.  Top  ->  ( N  e.  J  ->  ( S  C_  X  ->  ( S  C_  N  ->  N  e.  ( ( nei `  J ) `  S
) ) ) ) )
15143imp 1175 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  ->  N  e.  ( ( nei `  J ) `
 S ) ) )
16 ssnei 12309 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  N )
1716ex 114 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  S  C_  N ) )
18173ad2ant1 1002 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  ->  S  C_  N )
)
1915, 18impbid 128 1  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   U.cuni 3731   ` cfv 5118   Topctop 12153   neicnei 12296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-top 12154  df-nei 12297
This theorem is referenced by:  opnneiss  12316
  Copyright terms: Public domain W3C validator