| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opnneissb | Unicode version | ||
| Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.) |
| Ref | Expression |
|---|---|
| neips.1 |
|
| Ref | Expression |
|---|---|
| opnneissb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neips.1 |
. . . . . . 7
| |
| 2 | 1 | eltopss 14329 |
. . . . . 6
|
| 3 | 2 | adantr 276 |
. . . . 5
|
| 4 | ssid 3204 |
. . . . . . 7
| |
| 5 | sseq2 3208 |
. . . . . . . . 9
| |
| 6 | sseq1 3207 |
. . . . . . . . 9
| |
| 7 | 5, 6 | anbi12d 473 |
. . . . . . . 8
|
| 8 | 7 | rspcev 2868 |
. . . . . . 7
|
| 9 | 4, 8 | mpanr2 438 |
. . . . . 6
|
| 10 | 9 | ad2ant2l 508 |
. . . . 5
|
| 11 | 1 | isnei 14464 |
. . . . . 6
|
| 12 | 11 | ad2ant2r 509 |
. . . . 5
|
| 13 | 3, 10, 12 | mpbir2and 946 |
. . . 4
|
| 14 | 13 | exp43 372 |
. . 3
|
| 15 | 14 | 3imp 1195 |
. 2
|
| 16 | ssnei 14471 |
. . . 4
| |
| 17 | 16 | ex 115 |
. . 3
|
| 18 | 17 | 3ad2ant1 1020 |
. 2
|
| 19 | 15, 18 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-top 14318 df-nei 14459 |
| This theorem is referenced by: opnneiss 14478 |
| Copyright terms: Public domain | W3C validator |