ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opnneissb Unicode version

Theorem opnneissb 12007
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
opnneissb  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )

Proof of Theorem opnneissb
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7  |-  X  = 
U. J
21eltopss 11860 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  J )  ->  N  C_  X )
32adantr 271 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  N  C_  X )
4 ssid 3059 . . . . . . 7  |-  N  C_  N
5 sseq2 3063 . . . . . . . . 9  |-  ( g  =  N  ->  ( S  C_  g  <->  S  C_  N
) )
6 sseq1 3062 . . . . . . . . 9  |-  ( g  =  N  ->  (
g  C_  N  <->  N  C_  N
) )
75, 6anbi12d 458 . . . . . . . 8  |-  ( g  =  N  ->  (
( S  C_  g  /\  g  C_  N )  <-> 
( S  C_  N  /\  N  C_  N ) ) )
87rspcev 2736 . . . . . . 7  |-  ( ( N  e.  J  /\  ( S  C_  N  /\  N  C_  N ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
94, 8mpanr2 430 . . . . . 6  |-  ( ( N  e.  J  /\  S  C_  N )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
109ad2ant2l 493 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
111isnei 11996 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
1211ad2ant2r 494 . . . . 5  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
133, 10, 12mpbir2and 893 . . . 4  |-  ( ( ( J  e.  Top  /\  N  e.  J )  /\  ( S  C_  X  /\  S  C_  N
) )  ->  N  e.  ( ( nei `  J
) `  S )
)
1413exp43 365 . . 3  |-  ( J  e.  Top  ->  ( N  e.  J  ->  ( S  C_  X  ->  ( S  C_  N  ->  N  e.  ( ( nei `  J ) `  S
) ) ) ) )
15143imp 1140 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  ->  N  e.  ( ( nei `  J ) `
 S ) ) )
16 ssnei 12003 . . . 4  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  N )
1716ex 114 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  S  C_  N ) )
18173ad2ant1 967 . 2  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  ->  S  C_  N )
)
1915, 18impbid 128 1  |-  ( ( J  e.  Top  /\  N  e.  J  /\  S  C_  X )  -> 
( S  C_  N  <->  N  e.  ( ( nei `  J ) `  S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 927    = wceq 1296    e. wcel 1445   E.wrex 2371    C_ wss 3013   U.cuni 3675   ` cfv 5049   Topctop 11848   neicnei 11990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-top 11849  df-nei 11991
This theorem is referenced by:  opnneiss  12010
  Copyright terms: Public domain W3C validator