| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funssres | Unicode version | ||
| Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| funssres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . 5
| |
| 2 | 1 | opelres 4952 |
. . . 4
|
| 3 | ssel 3178 |
. . . . . . 7
| |
| 4 | vex 2766 |
. . . . . . . . 9
| |
| 5 | 4, 1 | opeldm 4870 |
. . . . . . . 8
|
| 6 | 5 | a1i 9 |
. . . . . . 7
|
| 7 | 3, 6 | jcad 307 |
. . . . . 6
|
| 8 | 7 | adantl 277 |
. . . . 5
|
| 9 | funeu2 5285 |
. . . . . . . . . . . 12
| |
| 10 | 4 | eldm2 4865 |
. . . . . . . . . . . . . 14
|
| 11 | 3 | ancrd 326 |
. . . . . . . . . . . . . . 15
|
| 12 | 11 | eximdv 1894 |
. . . . . . . . . . . . . 14
|
| 13 | 10, 12 | biimtrid 152 |
. . . . . . . . . . . . 13
|
| 14 | 13 | imp 124 |
. . . . . . . . . . . 12
|
| 15 | eupick 2124 |
. . . . . . . . . . . 12
| |
| 16 | 9, 14, 15 | syl2an 289 |
. . . . . . . . . . 11
|
| 17 | 16 | exp43 372 |
. . . . . . . . . 10
|
| 18 | 17 | com23 78 |
. . . . . . . . 9
|
| 19 | 18 | imp 124 |
. . . . . . . 8
|
| 20 | 19 | com34 83 |
. . . . . . 7
|
| 21 | 20 | pm2.43d 50 |
. . . . . 6
|
| 22 | 21 | impd 254 |
. . . . 5
|
| 23 | 8, 22 | impbid 129 |
. . . 4
|
| 24 | 2, 23 | bitr4id 199 |
. . 3
|
| 25 | 24 | alrimivv 1889 |
. 2
|
| 26 | relres 4975 |
. . 3
| |
| 27 | funrel 5276 |
. . . 4
| |
| 28 | relss 4751 |
. . . 4
| |
| 29 | 27, 28 | mpan9 281 |
. . 3
|
| 30 | eqrel 4753 |
. . 3
| |
| 31 | 26, 29, 30 | sylancr 414 |
. 2
|
| 32 | 25, 31 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-fun 5261 |
| This theorem is referenced by: fun2ssres 5302 funcnvres 5332 funssfv 5587 oprssov 6069 |
| Copyright terms: Public domain | W3C validator |