ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssres Unicode version

Theorem funssres 5296
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )

Proof of Theorem funssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . 5  |-  y  e. 
_V
21opelres 4947 . . . 4  |-  ( <.
x ,  y >.  e.  ( F  |`  dom  G
)  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) )
3 ssel 3173 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  <. x ,  y >.  e.  F
) )
4 vex 2763 . . . . . . . . 9  |-  x  e. 
_V
54, 1opeldm 4865 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
65a1i 9 . . . . . . 7  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  x  e. 
dom  G ) )
73, 6jcad 307 . . . . . 6  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
87adantl 277 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
9 funeu2 5280 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  <. x ,  y >.  e.  F
)  ->  E! y <. x ,  y >.  e.  F )
104eldm2 4860 . . . . . . . . . . . . . 14  |-  ( x  e.  dom  G  <->  E. y <. x ,  y >.  e.  G )
113ancrd 326 . . . . . . . . . . . . . . 15  |-  ( G 
C_  F  ->  ( <. x ,  y >.  e.  G  ->  ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1211eximdv 1891 . . . . . . . . . . . . . 14  |-  ( G 
C_  F  ->  ( E. y <. x ,  y
>.  e.  G  ->  E. y
( <. x ,  y
>.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1310, 12biimtrid 152 . . . . . . . . . . . . 13  |-  ( G 
C_  F  ->  (
x  e.  dom  G  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) ) )
1413imp 124 . . . . . . . . . . . 12  |-  ( ( G  C_  F  /\  x  e.  dom  G )  ->  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )
15 eupick 2121 . . . . . . . . . . . 12  |-  ( ( E! y <. x ,  y >.  e.  F  /\  E. y ( <.
x ,  y >.  e.  F  /\  <. x ,  y >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  G
) )
169, 14, 15syl2an 289 . . . . . . . . . . 11  |-  ( ( ( Fun  F  /\  <.
x ,  y >.  e.  F )  /\  ( G  C_  F  /\  x  e.  dom  G ) )  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) )
1716exp43 372 . . . . . . . . . 10  |-  ( Fun 
F  ->  ( <. x ,  y >.  e.  F  ->  ( G  C_  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1817com23 78 . . . . . . . . 9  |-  ( Fun 
F  ->  ( G  C_  F  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  ( <. x ,  y >.  e.  F  -> 
<. x ,  y >.  e.  G ) ) ) ) )
1918imp 124 . . . . . . . 8  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  -> 
( <. x ,  y
>.  e.  F  ->  <. x ,  y >.  e.  G
) ) ) )
2019com34 83 . . . . . . 7  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( <.
x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) ) )
2120pm2.43d 50 . . . . . 6  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  F  ->  ( x  e.  dom  G  ->  <. x ,  y >.  e.  G ) ) )
2221impd 254 . . . . 5  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( <. x ,  y
>.  e.  F  /\  x  e.  dom  G )  ->  <. x ,  y >.  e.  G ) )
238, 22impbid 129 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  G  <->  ( <. x ,  y >.  e.  F  /\  x  e.  dom  G ) ) )
242, 23bitr4id 199 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( <. x ,  y >.  e.  ( F  |`  dom  G
)  <->  <. x ,  y
>.  e.  G ) )
2524alrimivv 1886 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) )
26 relres 4970 . . 3  |-  Rel  ( F  |`  dom  G )
27 funrel 5271 . . . 4  |-  ( Fun 
F  ->  Rel  F )
28 relss 4746 . . . 4  |-  ( G 
C_  F  ->  ( Rel  F  ->  Rel  G ) )
2927, 28mpan9 281 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  Rel  G )
30 eqrel 4748 . . 3  |-  ( ( Rel  ( F  |`  dom  G )  /\  Rel  G )  ->  ( ( F  |`  dom  G )  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3126, 29, 30sylancr 414 . 2  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
)  =  G  <->  A. x A. y ( <. x ,  y >.  e.  ( F  |`  dom  G )  <->  <. x ,  y >.  e.  G ) ) )
3225, 31mpbird 167 1  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164    C_ wss 3153   <.cop 3621   dom cdm 4659    |` cres 4661   Rel wrel 4664   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-fun 5256
This theorem is referenced by:  fun2ssres  5297  funcnvres  5327  funssfv  5580  oprssov  6060
  Copyright terms: Public domain W3C validator