Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvopab3ig | Unicode version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
fvopab3ig.1 | |
fvopab3ig.2 | |
fvopab3ig.3 | |
fvopab3ig.4 |
Ref | Expression |
---|---|
fvopab3ig |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . . . . 8 | |
2 | fvopab3ig.1 | . . . . . . . 8 | |
3 | 1, 2 | anbi12d 465 | . . . . . . 7 |
4 | fvopab3ig.2 | . . . . . . . 8 | |
5 | 4 | anbi2d 460 | . . . . . . 7 |
6 | 3, 5 | opelopabg 4246 | . . . . . 6 |
7 | 6 | biimpar 295 | . . . . 5 |
8 | 7 | exp43 370 | . . . 4 |
9 | 8 | pm2.43a 51 | . . 3 |
10 | 9 | imp 123 | . 2 |
11 | fvopab3ig.4 | . . . 4 | |
12 | 11 | fveq1i 5487 | . . 3 |
13 | funopab 5223 | . . . . 5 | |
14 | fvopab3ig.3 | . . . . . 6 | |
15 | moanimv 2089 | . . . . . 6 | |
16 | 14, 15 | mpbir 145 | . . . . 5 |
17 | 13, 16 | mpgbir 1441 | . . . 4 |
18 | funopfv 5526 | . . . 4 | |
19 | 17, 18 | ax-mp 5 | . . 3 |
20 | 12, 19 | syl5eq 2211 | . 2 |
21 | 10, 20 | syl6 33 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wmo 2015 wcel 2136 cop 3579 copab 4042 wfun 5182 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: fvmptg 5562 fvopab6 5582 ov6g 5979 |
Copyright terms: Public domain | W3C validator |