| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvopab3ig | Unicode version | ||
| Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| fvopab3ig.1 |
|
| fvopab3ig.2 |
|
| fvopab3ig.3 |
|
| fvopab3ig.4 |
|
| Ref | Expression |
|---|---|
| fvopab3ig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. . . . . . . 8
| |
| 2 | fvopab3ig.1 |
. . . . . . . 8
| |
| 3 | 1, 2 | anbi12d 473 |
. . . . . . 7
|
| 4 | fvopab3ig.2 |
. . . . . . . 8
| |
| 5 | 4 | anbi2d 464 |
. . . . . . 7
|
| 6 | 3, 5 | opelopabg 4303 |
. . . . . 6
|
| 7 | 6 | biimpar 297 |
. . . . 5
|
| 8 | 7 | exp43 372 |
. . . 4
|
| 9 | 8 | pm2.43a 51 |
. . 3
|
| 10 | 9 | imp 124 |
. 2
|
| 11 | fvopab3ig.4 |
. . . 4
| |
| 12 | 11 | fveq1i 5562 |
. . 3
|
| 13 | funopab 5294 |
. . . . 5
| |
| 14 | fvopab3ig.3 |
. . . . . 6
| |
| 15 | moanimv 2120 |
. . . . . 6
| |
| 16 | 14, 15 | mpbir 146 |
. . . . 5
|
| 17 | 13, 16 | mpgbir 1467 |
. . . 4
|
| 18 | funopfv 5603 |
. . . 4
| |
| 19 | 17, 18 | ax-mp 5 |
. . 3
|
| 20 | 12, 19 | eqtrid 2241 |
. 2
|
| 21 | 10, 20 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: fvmptg 5640 fvopab6 5661 ov6g 6065 |
| Copyright terms: Public domain | W3C validator |