ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvopab3ig Unicode version

Theorem fvopab3ig 5461
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
fvopab3ig.2  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
fvopab3ig.3  |-  ( x  e.  C  ->  E* y ph )
fvopab3ig.4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
Assertion
Ref Expression
fvopab3ig  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    D( x, y)    F( x, y)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2178 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
2 fvopab3ig.1 . . . . . . . 8  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2anbi12d 462 . . . . . . 7  |-  ( x  =  A  ->  (
( x  e.  C  /\  ph )  <->  ( A  e.  C  /\  ps )
) )
4 fvopab3ig.2 . . . . . . . 8  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
54anbi2d 457 . . . . . . 7  |-  ( y  =  B  ->  (
( A  e.  C  /\  ps )  <->  ( A  e.  C  /\  ch )
) )
63, 5opelopabg 4158 . . . . . 6  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  <->  ( A  e.  C  /\  ch )
) )
76biimpar 293 . . . . 5  |-  ( ( ( A  e.  C  /\  B  e.  D
)  /\  ( A  e.  C  /\  ch )
)  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } )
87exp43 367 . . . 4  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( A  e.  C  -> 
( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) ) )
98pm2.43a 51 . . 3  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) ) )
109imp 123 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } ) )
11 fvopab3ig.4 . . . 4  |-  F  =  { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }
1211fveq1i 5388 . . 3  |-  ( F `
 A )  =  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)
13 funopab 5126 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } 
<-> 
A. x E* y
( x  e.  C  /\  ph ) )
14 fvopab3ig.3 . . . . . 6  |-  ( x  e.  C  ->  E* y ph )
15 moanimv 2050 . . . . . 6  |-  ( E* y ( x  e.  C  /\  ph )  <->  ( x  e.  C  ->  E* y ph ) )
1614, 15mpbir 145 . . . . 5  |-  E* y
( x  e.  C  /\  ph )
1713, 16mpgbir 1412 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }
18 funopfv 5427 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y
>.  |  ( x  e.  C  /\  ph ) } `  A )  =  B ) )
1917, 18ax-mp 5 . . 3  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  C  /\  ph ) } `  A
)  =  B )
2012, 19syl5eq 2160 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ( x  e.  C  /\  ph ) }  ->  ( F `  A )  =  B )
2110, 20syl6 33 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ch  ->  ( F `  A )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   E*wmo 1976   <.cop 3498   {copab 3956   Fun wfun 5085   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099
This theorem is referenced by:  fvmptg  5463  fvopab6  5483  ov6g  5874
  Copyright terms: Public domain W3C validator