| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvopab3ig | Unicode version | ||
| Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
| Ref | Expression |
|---|---|
| fvopab3ig.1 |
|
| fvopab3ig.2 |
|
| fvopab3ig.3 |
|
| fvopab3ig.4 |
|
| Ref | Expression |
|---|---|
| fvopab3ig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2292 |
. . . . . . . 8
| |
| 2 | fvopab3ig.1 |
. . . . . . . 8
| |
| 3 | 1, 2 | anbi12d 473 |
. . . . . . 7
|
| 4 | fvopab3ig.2 |
. . . . . . . 8
| |
| 5 | 4 | anbi2d 464 |
. . . . . . 7
|
| 6 | 3, 5 | opelopabg 4356 |
. . . . . 6
|
| 7 | 6 | biimpar 297 |
. . . . 5
|
| 8 | 7 | exp43 372 |
. . . 4
|
| 9 | 8 | pm2.43a 51 |
. . 3
|
| 10 | 9 | imp 124 |
. 2
|
| 11 | fvopab3ig.4 |
. . . 4
| |
| 12 | 11 | fveq1i 5628 |
. . 3
|
| 13 | funopab 5353 |
. . . . 5
| |
| 14 | fvopab3ig.3 |
. . . . . 6
| |
| 15 | moanimv 2153 |
. . . . . 6
| |
| 16 | 14, 15 | mpbir 146 |
. . . . 5
|
| 17 | 13, 16 | mpgbir 1499 |
. . . 4
|
| 18 | funopfv 5671 |
. . . 4
| |
| 19 | 17, 18 | ax-mp 5 |
. . 3
|
| 20 | 12, 19 | eqtrid 2274 |
. 2
|
| 21 | 10, 20 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: fvmptg 5710 fvopab6 5731 ov6g 6143 |
| Copyright terms: Public domain | W3C validator |