ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qaddcl Unicode version

Theorem qaddcl 9700
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )

Proof of Theorem qaddcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9687 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 9687 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 nnz 9336 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  ZZ )
4 zmulcl 9370 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  w  e.  ZZ )  ->  ( x  x.  w
)  e.  ZZ )
53, 4sylan2 286 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  w  e.  NN )  ->  ( x  x.  w
)  e.  ZZ )
65ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  x.  w
)  e.  ZZ )
7 simpl 109 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  z  e.  ZZ )
8 nnz 9336 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
98adantl 277 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
10 zmulcl 9370 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  x.  y
)  e.  ZZ )
117, 9, 10syl2anr 290 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( z  x.  y
)  e.  ZZ )
126, 11zaddcld 9443 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ )
1312adantr 276 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  w )  +  ( z  x.  y
) )  e.  ZZ )
14 nnmulcl 9003 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
1514ad2ant2l 508 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( y  x.  w
)  e.  NN )
1615adantr 276 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( y  x.  w )  e.  NN )
17 oveq12 5927 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  +  B
)  =  ( ( x  /  y )  +  ( z  /  w ) ) )
18 zcn 9322 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
19 zcn 9322 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
2018, 19anim12i 338 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
21 nncn 8990 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
22 nnap0 9011 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y #  0 )
2321, 22jca 306 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y #  0 ) )
24 nncn 8990 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
25 nnap0 9011 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w #  0 )
2624, 25jca 306 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w #  0 ) )
2723, 26anim12i 338 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
28 divadddivap 8746 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  +  ( z  /  w
) )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
2920, 27, 28syl2an 289 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3029an4s 588 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3117, 30sylan9eqr 2248 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
32 rspceov 5960 . . . . . . . . 9  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
33 elq 9687 . . . . . . . . 9  |-  ( ( A  +  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
3432, 33sylibr 134 . . . . . . . 8  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  ( A  +  B )  e.  QQ )
3513, 16, 31, 34syl3anc 1249 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3635an4s 588 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3736exp43 372 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) ) ) )
3837rexlimivv 2617 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  +  B )  e.  QQ ) ) )
3938rexlimdvv 2618 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) )
4039imp 124 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  +  B )  e.  QQ )
411, 2, 40syl2anb 291 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875    x. cmul 7877   # cap 8600    / cdiv 8691   NNcn 8982   ZZcz 9317   QQcq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685
This theorem is referenced by:  qsubcl  9703  qrevaddcl  9709  flqbi2  10360  flqaddz  10366  flqdiv  10392  modqcyc  10430  modqadd1  10432  modqltm1p1mod  10447  modaddmodlo  10459  modsumfzodifsn  10467  addmodlteq  10469  pcaddlem  12477  pcadd2  12479  4sqlem5  12520  4sqlem6  12521  4sqlem10  12525  lgseisen  15190  apdifflemf  15536  apdiff  15538
  Copyright terms: Public domain W3C validator