ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qaddcl Unicode version

Theorem qaddcl 9709
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )

Proof of Theorem qaddcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9696 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 9696 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 nnz 9345 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  ZZ )
4 zmulcl 9379 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  w  e.  ZZ )  ->  ( x  x.  w
)  e.  ZZ )
53, 4sylan2 286 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  w  e.  NN )  ->  ( x  x.  w
)  e.  ZZ )
65ad2ant2rl 511 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  x.  w
)  e.  ZZ )
7 simpl 109 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  z  e.  ZZ )
8 nnz 9345 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
98adantl 277 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
10 zmulcl 9379 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  x.  y
)  e.  ZZ )
117, 9, 10syl2anr 290 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( z  x.  y
)  e.  ZZ )
126, 11zaddcld 9452 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ )
1312adantr 276 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  w )  +  ( z  x.  y
) )  e.  ZZ )
14 nnmulcl 9011 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
1514ad2ant2l 508 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( y  x.  w
)  e.  NN )
1615adantr 276 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( y  x.  w )  e.  NN )
17 oveq12 5931 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  +  B
)  =  ( ( x  /  y )  +  ( z  /  w ) ) )
18 zcn 9331 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
19 zcn 9331 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
2018, 19anim12i 338 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
21 nncn 8998 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
22 nnap0 9019 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y #  0 )
2321, 22jca 306 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y #  0 ) )
24 nncn 8998 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
25 nnap0 9019 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w #  0 )
2624, 25jca 306 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w #  0 ) )
2723, 26anim12i 338 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
28 divadddivap 8754 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  +  ( z  /  w
) )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
2920, 27, 28syl2an 289 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3029an4s 588 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3117, 30sylan9eqr 2251 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
32 rspceov 5964 . . . . . . . . 9  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
33 elq 9696 . . . . . . . . 9  |-  ( ( A  +  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
3432, 33sylibr 134 . . . . . . . 8  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  ( A  +  B )  e.  QQ )
3513, 16, 31, 34syl3anc 1249 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3635an4s 588 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3736exp43 372 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) ) ) )
3837rexlimivv 2620 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  +  B )  e.  QQ ) ) )
3938rexlimdvv 2621 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) )
4039imp 124 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  +  B )  e.  QQ )
411, 2, 40syl2anb 291 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882    x. cmul 7884   # cap 8608    / cdiv 8699   NNcn 8990   ZZcz 9326   QQcq 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-q 9694
This theorem is referenced by:  qsubcl  9712  qrevaddcl  9718  flqbi2  10381  flqaddz  10387  flqdiv  10413  modqcyc  10451  modqadd1  10453  modqltm1p1mod  10468  modaddmodlo  10480  modsumfzodifsn  10488  addmodlteq  10490  pcaddlem  12508  pcadd2  12510  4sqlem5  12551  4sqlem6  12552  4sqlem10  12556  lgseisen  15315  apdifflemf  15690  apdiff  15692
  Copyright terms: Public domain W3C validator