ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qaddcl Unicode version

Theorem qaddcl 9329
Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qaddcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )

Proof of Theorem qaddcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9316 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 9316 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 nnz 8977 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  ZZ )
4 zmulcl 9011 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  w  e.  ZZ )  ->  ( x  x.  w
)  e.  ZZ )
53, 4sylan2 282 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  w  e.  NN )  ->  ( x  x.  w
)  e.  ZZ )
65ad2ant2rl 500 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  x.  w
)  e.  ZZ )
7 simpl 108 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  z  e.  ZZ )
8 nnz 8977 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
98adantl 273 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
10 zmulcl 9011 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  ZZ )  ->  ( z  x.  y
)  e.  ZZ )
117, 9, 10syl2anr 286 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( z  x.  y
)  e.  ZZ )
126, 11zaddcld 9081 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ )
1312adantr 272 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  w )  +  ( z  x.  y
) )  e.  ZZ )
14 nnmulcl 8651 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
1514ad2ant2l 497 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( y  x.  w
)  e.  NN )
1615adantr 272 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( y  x.  w )  e.  NN )
17 oveq12 5737 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  +  B
)  =  ( ( x  /  y )  +  ( z  /  w ) ) )
18 zcn 8963 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
19 zcn 8963 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
2018, 19anim12i 334 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
21 nncn 8638 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
22 nnap0 8659 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y #  0 )
2321, 22jca 302 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y #  0 ) )
24 nncn 8638 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
25 nnap0 8659 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w #  0 )
2624, 25jca 302 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w #  0 ) )
2723, 26anim12i 334 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
28 divadddivap 8400 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  +  ( z  /  w
) )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
2920, 27, 28syl2an 285 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3029an4s 560 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  +  ( z  /  w ) )  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
3117, 30sylan9eqr 2169 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  =  ( ( ( x  x.  w )  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )
32 rspceov 5767 . . . . . . . . 9  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
33 elq 9316 . . . . . . . . 9  |-  ( ( A  +  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  +  B )  =  ( v  /  u ) )
3432, 33sylibr 133 . . . . . . . 8  |-  ( ( ( ( x  x.  w )  +  ( z  x.  y ) )  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  +  B
)  =  ( ( ( x  x.  w
)  +  ( z  x.  y ) )  /  ( y  x.  w ) ) )  ->  ( A  +  B )  e.  QQ )
3513, 16, 31, 34syl3anc 1199 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3635an4s 560 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  +  B )  e.  QQ )
3736exp43 367 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) ) ) )
3837rexlimivv 2529 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  +  B )  e.  QQ ) ) )
3938rexlimdvv 2530 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  +  B )  e.  QQ ) )
4039imp 123 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  +  B )  e.  QQ )
411, 2, 40syl2anb 287 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2391   class class class wbr 3895  (class class class)co 5728   CCcc 7545   0cc0 7547    + caddc 7550    x. cmul 7552   # cap 8261    / cdiv 8345   NNcn 8630   ZZcz 8958   QQcq 9313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-n0 8882  df-z 8959  df-q 9314
This theorem is referenced by:  qsubcl  9332  qrevaddcl  9338  flqbi2  9957  flqaddz  9963  flqdiv  9987  modqcyc  10025  modqadd1  10027  modqltm1p1mod  10042  modaddmodlo  10054  modsumfzodifsn  10062  addmodlteq  10064
  Copyright terms: Public domain W3C validator