| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qmulcl | Unicode version | ||
| Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| qmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9743 |
. 2
| |
| 2 | elq 9743 |
. 2
| |
| 3 | zmulcl 9426 |
. . . . . . . . . . 11
| |
| 4 | nnmulcl 9057 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | anim12i 338 |
. . . . . . . . . 10
|
| 6 | 5 | an4s 588 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | oveq12 5953 |
. . . . . . . . 9
| |
| 9 | zcn 9377 |
. . . . . . . . . . . 12
| |
| 10 | zcn 9377 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | anim12i 338 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2ant2r 509 |
. . . . . . . . . 10
|
| 13 | nncn 9044 |
. . . . . . . . . . . . 13
| |
| 14 | nnap0 9065 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | jca 306 |
. . . . . . . . . . . 12
|
| 16 | nncn 9044 |
. . . . . . . . . . . . 13
| |
| 17 | nnap0 9065 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | jca 306 |
. . . . . . . . . . . 12
|
| 19 | 15, 18 | anim12i 338 |
. . . . . . . . . . 11
|
| 20 | 19 | ad2ant2l 508 |
. . . . . . . . . 10
|
| 21 | divmuldivap 8785 |
. . . . . . . . . 10
| |
| 22 | 12, 20, 21 | syl2anc 411 |
. . . . . . . . 9
|
| 23 | 8, 22 | sylan9eqr 2260 |
. . . . . . . 8
|
| 24 | rspceov 5987 |
. . . . . . . . . 10
| |
| 25 | 24 | 3expa 1206 |
. . . . . . . . 9
|
| 26 | elq 9743 |
. . . . . . . . 9
| |
| 27 | 25, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 7, 23, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | 28 | an4s 588 |
. . . . . 6
|
| 30 | 29 | exp43 372 |
. . . . 5
|
| 31 | 30 | rexlimivv 2629 |
. . . 4
|
| 32 | 31 | rexlimdvv 2630 |
. . 3
|
| 33 | 32 | imp 124 |
. 2
|
| 34 | 1, 2, 33 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-n0 9296 df-z 9373 df-q 9741 |
| This theorem is referenced by: qdivcl 9764 flqmulnn0 10442 modqcl 10471 mulqmod0 10475 modqmulnn 10487 modqcyc 10504 mulp1mod1 10510 modqmul1 10522 q2txmodxeq0 10529 modqaddmulmod 10536 modqdi 10537 modqsubdir 10538 qexpcl 10700 qexpclz 10705 qsqcl 10756 dvdslelemd 12154 crth 12546 pcaddlem 12662 lgseisenlem4 15550 lgseisen 15551 lgsquadlem1 15554 lgsquadlem2 15555 apdifflemr 15986 apdiff 15987 |
| Copyright terms: Public domain | W3C validator |