Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qmulcl | Unicode version |
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
qmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9568 | . 2 | |
2 | elq 9568 | . 2 | |
3 | zmulcl 9252 | . . . . . . . . . . 11 | |
4 | nnmulcl 8886 | . . . . . . . . . . 11 | |
5 | 3, 4 | anim12i 336 | . . . . . . . . . 10 |
6 | 5 | an4s 583 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | oveq12 5859 | . . . . . . . . 9 | |
9 | zcn 9204 | . . . . . . . . . . . 12 | |
10 | zcn 9204 | . . . . . . . . . . . 12 | |
11 | 9, 10 | anim12i 336 | . . . . . . . . . . 11 |
12 | 11 | ad2ant2r 506 | . . . . . . . . . 10 |
13 | nncn 8873 | . . . . . . . . . . . . 13 | |
14 | nnap0 8894 | . . . . . . . . . . . . 13 # | |
15 | 13, 14 | jca 304 | . . . . . . . . . . . 12 # |
16 | nncn 8873 | . . . . . . . . . . . . 13 | |
17 | nnap0 8894 | . . . . . . . . . . . . 13 # | |
18 | 16, 17 | jca 304 | . . . . . . . . . . . 12 # |
19 | 15, 18 | anim12i 336 | . . . . . . . . . . 11 # # |
20 | 19 | ad2ant2l 505 | . . . . . . . . . 10 # # |
21 | divmuldivap 8616 | . . . . . . . . . 10 # # | |
22 | 12, 20, 21 | syl2anc 409 | . . . . . . . . 9 |
23 | 8, 22 | sylan9eqr 2225 | . . . . . . . 8 |
24 | rspceov 5892 | . . . . . . . . . 10 | |
25 | 24 | 3expa 1198 | . . . . . . . . 9 |
26 | elq 9568 | . . . . . . . . 9 | |
27 | 25, 26 | sylibr 133 | . . . . . . . 8 |
28 | 7, 23, 27 | syl2anc 409 | . . . . . . 7 |
29 | 28 | an4s 583 | . . . . . 6 |
30 | 29 | exp43 370 | . . . . 5 |
31 | 30 | rexlimivv 2593 | . . . 4 |
32 | 31 | rexlimdvv 2594 | . . 3 |
33 | 32 | imp 123 | . 2 |
34 | 1, 2, 33 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3987 (class class class)co 5850 cc 7759 cc0 7761 cmul 7766 # cap 8487 cdiv 8576 cn 8865 cz 9199 cq 9565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-po 4279 df-iso 4280 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-n0 9123 df-z 9200 df-q 9566 |
This theorem is referenced by: qdivcl 9589 flqmulnn0 10242 modqcl 10269 mulqmod0 10273 modqmulnn 10285 modqcyc 10302 mulp1mod1 10308 modqmul1 10320 q2txmodxeq0 10327 modqaddmulmod 10334 modqdi 10335 modqsubdir 10336 qexpcl 10479 qexpclz 10484 qsqcl 10534 dvdslelemd 11790 crth 12165 pcaddlem 12279 apdifflemr 14001 apdiff 14002 |
Copyright terms: Public domain | W3C validator |