| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qmulcl | Unicode version | ||
| Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| qmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9713 |
. 2
| |
| 2 | elq 9713 |
. 2
| |
| 3 | zmulcl 9396 |
. . . . . . . . . . 11
| |
| 4 | nnmulcl 9028 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | anim12i 338 |
. . . . . . . . . 10
|
| 6 | 5 | an4s 588 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | oveq12 5934 |
. . . . . . . . 9
| |
| 9 | zcn 9348 |
. . . . . . . . . . . 12
| |
| 10 | zcn 9348 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | anim12i 338 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2ant2r 509 |
. . . . . . . . . 10
|
| 13 | nncn 9015 |
. . . . . . . . . . . . 13
| |
| 14 | nnap0 9036 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | jca 306 |
. . . . . . . . . . . 12
|
| 16 | nncn 9015 |
. . . . . . . . . . . . 13
| |
| 17 | nnap0 9036 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | jca 306 |
. . . . . . . . . . . 12
|
| 19 | 15, 18 | anim12i 338 |
. . . . . . . . . . 11
|
| 20 | 19 | ad2ant2l 508 |
. . . . . . . . . 10
|
| 21 | divmuldivap 8756 |
. . . . . . . . . 10
| |
| 22 | 12, 20, 21 | syl2anc 411 |
. . . . . . . . 9
|
| 23 | 8, 22 | sylan9eqr 2251 |
. . . . . . . 8
|
| 24 | rspceov 5968 |
. . . . . . . . . 10
| |
| 25 | 24 | 3expa 1205 |
. . . . . . . . 9
|
| 26 | elq 9713 |
. . . . . . . . 9
| |
| 27 | 25, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 7, 23, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | 28 | an4s 588 |
. . . . . 6
|
| 30 | 29 | exp43 372 |
. . . . 5
|
| 31 | 30 | rexlimivv 2620 |
. . . 4
|
| 32 | 31 | rexlimdvv 2621 |
. . 3
|
| 33 | 32 | imp 124 |
. 2
|
| 34 | 1, 2, 33 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 |
| This theorem is referenced by: qdivcl 9734 flqmulnn0 10406 modqcl 10435 mulqmod0 10439 modqmulnn 10451 modqcyc 10468 mulp1mod1 10474 modqmul1 10486 q2txmodxeq0 10493 modqaddmulmod 10500 modqdi 10501 modqsubdir 10502 qexpcl 10664 qexpclz 10669 qsqcl 10720 dvdslelemd 12025 crth 12417 pcaddlem 12533 lgseisenlem4 15398 lgseisen 15399 lgsquadlem1 15402 lgsquadlem2 15403 apdifflemr 15778 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |