ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qmulcl Unicode version

Theorem qmulcl 9429
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qmulcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )

Proof of Theorem qmulcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9414 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 9414 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 zmulcl 9107 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  x.  z
)  e.  ZZ )
4 nnmulcl 8741 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
53, 4anim12i 336 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
65an4s 577 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
76adantr 274 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w )  e.  NN ) )
8 oveq12 5783 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
9 zcn 9059 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 9059 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
119, 10anim12i 336 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
1211ad2ant2r 500 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  e.  CC  /\  z  e.  CC ) )
13 nncn 8728 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
14 nnap0 8749 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y #  0 )
1513, 14jca 304 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y #  0 ) )
16 nncn 8728 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
17 nnap0 8749 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w #  0 )
1816, 17jca 304 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w #  0 ) )
1915, 18anim12i 336 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
2019ad2ant2l 499 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( y  e.  CC  /\  y #  0 )  /\  ( w  e.  CC  /\  w #  0 ) ) )
21 divmuldivap 8472 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y #  0 )  /\  (
w  e.  CC  /\  w #  0 ) ) )  ->  ( ( x  /  y )  x.  ( z  /  w
) )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )
2212, 20, 21syl2anc 408 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
238, 22sylan9eqr 2194 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )
24 rspceov 5813 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  x.  B
)  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
25243expa 1181 . . . . . . . . 9  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
26 elq 9414 . . . . . . . . 9  |-  ( ( A  x.  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
2725, 26sylibr 133 . . . . . . . 8  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  ( A  x.  B )  e.  QQ )
287, 23, 27syl2anc 408 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
2928an4s 577 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
3029exp43 369 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) ) ) )
3130rexlimivv 2555 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  x.  B )  e.  QQ ) ) )
3231rexlimdvv 2556 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) )
3332imp 123 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  x.  B )  e.  QQ )
341, 2, 33syl2anb 289 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   E.wrex 2417   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620    x. cmul 7625   # cap 8343    / cdiv 8432   NNcn 8720   ZZcz 9054   QQcq 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412
This theorem is referenced by:  qdivcl  9435  flqmulnn0  10072  modqcl  10099  mulqmod0  10103  modqmulnn  10115  modqcyc  10132  mulp1mod1  10138  modqmul1  10150  q2txmodxeq0  10157  modqaddmulmod  10164  modqdi  10165  modqsubdir  10166  qexpcl  10309  qexpclz  10314  qsqcl  10364  dvdslelemd  11541  crth  11900
  Copyright terms: Public domain W3C validator