Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qmulcl | Unicode version |
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
qmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 9560 | . 2 | |
2 | elq 9560 | . 2 | |
3 | zmulcl 9244 | . . . . . . . . . . 11 | |
4 | nnmulcl 8878 | . . . . . . . . . . 11 | |
5 | 3, 4 | anim12i 336 | . . . . . . . . . 10 |
6 | 5 | an4s 578 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | oveq12 5851 | . . . . . . . . 9 | |
9 | zcn 9196 | . . . . . . . . . . . 12 | |
10 | zcn 9196 | . . . . . . . . . . . 12 | |
11 | 9, 10 | anim12i 336 | . . . . . . . . . . 11 |
12 | 11 | ad2ant2r 501 | . . . . . . . . . 10 |
13 | nncn 8865 | . . . . . . . . . . . . 13 | |
14 | nnap0 8886 | . . . . . . . . . . . . 13 # | |
15 | 13, 14 | jca 304 | . . . . . . . . . . . 12 # |
16 | nncn 8865 | . . . . . . . . . . . . 13 | |
17 | nnap0 8886 | . . . . . . . . . . . . 13 # | |
18 | 16, 17 | jca 304 | . . . . . . . . . . . 12 # |
19 | 15, 18 | anim12i 336 | . . . . . . . . . . 11 # # |
20 | 19 | ad2ant2l 500 | . . . . . . . . . 10 # # |
21 | divmuldivap 8608 | . . . . . . . . . 10 # # | |
22 | 12, 20, 21 | syl2anc 409 | . . . . . . . . 9 |
23 | 8, 22 | sylan9eqr 2221 | . . . . . . . 8 |
24 | rspceov 5884 | . . . . . . . . . 10 | |
25 | 24 | 3expa 1193 | . . . . . . . . 9 |
26 | elq 9560 | . . . . . . . . 9 | |
27 | 25, 26 | sylibr 133 | . . . . . . . 8 |
28 | 7, 23, 27 | syl2anc 409 | . . . . . . 7 |
29 | 28 | an4s 578 | . . . . . 6 |
30 | 29 | exp43 370 | . . . . 5 |
31 | 30 | rexlimivv 2589 | . . . 4 |
32 | 31 | rexlimdvv 2590 | . . 3 |
33 | 32 | imp 123 | . 2 |
34 | 1, 2, 33 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 cmul 7758 # cap 8479 cdiv 8568 cn 8857 cz 9191 cq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-q 9558 |
This theorem is referenced by: qdivcl 9581 flqmulnn0 10234 modqcl 10261 mulqmod0 10265 modqmulnn 10277 modqcyc 10294 mulp1mod1 10300 modqmul1 10312 q2txmodxeq0 10319 modqaddmulmod 10326 modqdi 10327 modqsubdir 10328 qexpcl 10471 qexpclz 10476 qsqcl 10526 dvdslelemd 11781 crth 12156 pcaddlem 12270 apdifflemr 13926 apdiff 13927 |
Copyright terms: Public domain | W3C validator |