| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qmulcl | Unicode version | ||
| Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| qmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9696 |
. 2
| |
| 2 | elq 9696 |
. 2
| |
| 3 | zmulcl 9379 |
. . . . . . . . . . 11
| |
| 4 | nnmulcl 9011 |
. . . . . . . . . . 11
| |
| 5 | 3, 4 | anim12i 338 |
. . . . . . . . . 10
|
| 6 | 5 | an4s 588 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | oveq12 5931 |
. . . . . . . . 9
| |
| 9 | zcn 9331 |
. . . . . . . . . . . 12
| |
| 10 | zcn 9331 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | anim12i 338 |
. . . . . . . . . . 11
|
| 12 | 11 | ad2ant2r 509 |
. . . . . . . . . 10
|
| 13 | nncn 8998 |
. . . . . . . . . . . . 13
| |
| 14 | nnap0 9019 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | jca 306 |
. . . . . . . . . . . 12
|
| 16 | nncn 8998 |
. . . . . . . . . . . . 13
| |
| 17 | nnap0 9019 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | jca 306 |
. . . . . . . . . . . 12
|
| 19 | 15, 18 | anim12i 338 |
. . . . . . . . . . 11
|
| 20 | 19 | ad2ant2l 508 |
. . . . . . . . . 10
|
| 21 | divmuldivap 8739 |
. . . . . . . . . 10
| |
| 22 | 12, 20, 21 | syl2anc 411 |
. . . . . . . . 9
|
| 23 | 8, 22 | sylan9eqr 2251 |
. . . . . . . 8
|
| 24 | rspceov 5964 |
. . . . . . . . . 10
| |
| 25 | 24 | 3expa 1205 |
. . . . . . . . 9
|
| 26 | elq 9696 |
. . . . . . . . 9
| |
| 27 | 25, 26 | sylibr 134 |
. . . . . . . 8
|
| 28 | 7, 23, 27 | syl2anc 411 |
. . . . . . 7
|
| 29 | 28 | an4s 588 |
. . . . . 6
|
| 30 | 29 | exp43 372 |
. . . . 5
|
| 31 | 30 | rexlimivv 2620 |
. . . 4
|
| 32 | 31 | rexlimdvv 2621 |
. . 3
|
| 33 | 32 | imp 124 |
. 2
|
| 34 | 1, 2, 33 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-q 9694 |
| This theorem is referenced by: qdivcl 9717 flqmulnn0 10389 modqcl 10418 mulqmod0 10422 modqmulnn 10434 modqcyc 10451 mulp1mod1 10457 modqmul1 10469 q2txmodxeq0 10476 modqaddmulmod 10483 modqdi 10484 modqsubdir 10485 qexpcl 10647 qexpclz 10652 qsqcl 10703 dvdslelemd 12008 crth 12392 pcaddlem 12508 lgseisenlem4 15314 lgseisen 15315 lgsquadlem1 15318 lgsquadlem2 15319 apdifflemr 15691 apdiff 15692 |
| Copyright terms: Public domain | W3C validator |