ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmordi Unicode version

Theorem nnmordi 6495
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )

Proof of Theorem nnmordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 4590 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  om )  ->  A  e.  om )
21expcom 115 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A  e.  om ) )
3 eleq2 2234 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
4 oveq2 5861 . . . . . . . . . . . 12  |-  ( x  =  B  ->  ( C  .o  x )  =  ( C  .o  B
) )
54eleq2d 2240 . . . . . . . . . . 11  |-  ( x  =  B  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
63, 5imbi12d 233 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
76imbi2d 229 . . . . . . . . 9  |-  ( x  =  B  ->  (
( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x
) ) )  <->  ( (
( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8 eleq2 2234 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
9 oveq2 5861 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( C  .o  x )  =  ( C  .o  (/) ) )
109eleq2d 2240 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( C  .o  A )  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
118, 10imbi12d 233 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  (/)  ->  ( C  .o  A
)  e.  ( C  .o  (/) ) ) ) )
12 eleq2 2234 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
13 oveq2 5861 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( C  .o  x )  =  ( C  .o  y
) )
1413eleq2d 2240 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  y ) ) )
1512, 14imbi12d 233 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )
16 eleq2 2234 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
17 oveq2 5861 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( C  .o  x
)  =  ( C  .o  suc  y ) )
1817eleq2d 2240 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( ( C  .o  A )  e.  ( C  .o  x )  <-> 
( C  .o  A
)  e.  ( C  .o  suc  y ) ) )
1916, 18imbi12d 233 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) )  <->  ( A  e. 
suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) )
20 noel 3418 . . . . . . . . . . . 12  |-  -.  A  e.  (/)
2120pm2.21i 641 . . . . . . . . . . 11  |-  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) )
2221a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
23 elsuci 4388 . . . . . . . . . . . . . . . 16  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
24 nnmcl 6460 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  .o  y
)  e.  om )
25 simpl 108 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  om  /\  y  e.  om )  ->  C  e.  om )
2624, 25jca 304 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( ( C  .o  y )  e.  om  /\  C  e.  om )
)
27 nnaword1 6492 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( C  .o  y
)  C_  ( ( C  .o  y )  +o  C ) )
2827sseld 3146 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
2928imim2d 54 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) ) )
3029imp 123 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C ) ) )
3130adantrl 475 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
32 nna0 6453 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( C  .o  y )  e.  om  ->  (
( C  .o  y
)  +o  (/) )  =  ( C  .o  y
) )
3332ad2antrr 485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  y )  +o  (/) )  =  ( C  .o  y ) )
34 nnaordi 6487 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( C  e.  om  /\  ( C  .o  y
)  e.  om )  ->  ( (/)  e.  C  ->  ( ( C  .o  y )  +o  (/) )  e.  ( ( C  .o  y )  +o  C
) ) )
3534ancoms 266 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( C  .o  y
)  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( ( C  .o  y )  +o  (/) )  e.  ( ( C  .o  y )  +o  C
) ) )
3635imp 123 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( ( C  .o  y )  +o  (/) )  e.  (
( C  .o  y
)  +o  C ) )
3733, 36eqeltrrd 2248 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) )
38 oveq2 5861 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =  y  ->  ( C  .o  A )  =  ( C  .o  y
) )
3938eleq1d 2239 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =  y  ->  (
( C  .o  A
)  e.  ( ( C  .o  y )  +o  C )  <->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) ) )
4037, 39syl5ibrcom 156 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4140adantrr 476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4231, 41jaod 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  om  /\  C  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
4326, 42sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
4423, 43syl5 32 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
45 nnmsuc 6456 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( C  .o  suc  y )  =  ( ( C  .o  y
)  +o  C ) )
4645eleq2d 2240 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  om  /\  y  e.  om )  ->  ( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4746adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4844, 47sylibrd 168 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  om  /\  y  e.  om )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) )
4948exp43 370 . . . . . . . . . . . . 13  |-  ( C  e.  om  ->  (
y  e.  om  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5049com12 30 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5150adantld 276 . . . . . . . . . . 11  |-  ( y  e.  om  ->  (
( A  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
5251impd 252 . . . . . . . . . 10  |-  ( y  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) ) ) )
5311, 15, 19, 22, 52finds2 4585 . . . . . . . . 9  |-  ( x  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x
) ) ) )
547, 53vtoclga 2796 . . . . . . . 8  |-  ( B  e.  om  ->  (
( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B
) ) ) )
5554com23 78 . . . . . . 7  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( ( ( A  e. 
om  /\  C  e.  om )  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
5655exp4a 364 . . . . . 6  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( ( A  e.  om  /\  C  e.  om )  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
5756exp4a 364 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( A  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
582, 57mpdd 41 . . . 4  |-  ( B  e.  om  ->  ( A  e.  B  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
5958com34 83 . . 3  |-  ( B  e.  om  ->  ( A  e.  B  ->  (
(/)  e.  C  ->  ( C  e.  om  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
6059com24 87 . 2  |-  ( B  e.  om  ->  ( C  e.  om  ->  (
(/)  e.  C  ->  ( A  e.  B  -> 
( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
6160imp31 254 1  |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   (/)c0 3414   suc csuc 4350   omcom 4574  (class class class)co 5853    +o coa 6392    .o comu 6393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400
This theorem is referenced by:  nnmord  6496  nnm00  6509  mulclpi  7290
  Copyright terms: Public domain W3C validator