| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp4b | Unicode version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| exp4b.1 |
|
| Ref | Expression |
|---|---|
| exp4b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | exp4a 366 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exp43 372 reuss2 3484 nndi 6630 mulnqprl 7751 mulnqpru 7752 distrlem5prl 7769 distrlem5pru 7770 recexprlemss1l 7818 recexprlemss1u 7819 lemul12a 9005 nnmulcl 9127 elfz0fzfz0 10318 fzo1fzo0n0 10379 fzofzim 10384 elincfzoext 10394 elfzodifsumelfzo 10402 le2sq2 10832 swrdswrd 11232 swrdccat3blem 11266 oddprmgt2 12651 infpnlem1 12877 lmodvsdi 14269 |
| Copyright terms: Public domain | W3C validator |