ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b Unicode version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
exp4b  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
21ex 115 . 2  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )
32exp4a 366 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3427  nndi  6501  mulnqprl  7581  mulnqpru  7582  distrlem5prl  7599  distrlem5pru  7600  recexprlemss1l  7648  recexprlemss1u  7649  lemul12a  8833  nnmulcl  8954  elfz0fzfz0  10140  fzo1fzo0n0  10197  fzofzim  10202  elfzodifsumelfzo  10215  le2sq2  10610  oddprmgt2  12148  infpnlem1  12371  lmodvsdi  13557
  Copyright terms: Public domain W3C validator