ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b Unicode version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
exp4b  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
21ex 115 . 2  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )
32exp4a 366 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3452  nndi  6571  mulnqprl  7680  mulnqpru  7681  distrlem5prl  7698  distrlem5pru  7699  recexprlemss1l  7747  recexprlemss1u  7748  lemul12a  8934  nnmulcl  9056  elfz0fzfz0  10247  fzo1fzo0n0  10305  fzofzim  10310  elincfzoext  10320  elfzodifsumelfzo  10328  le2sq2  10758  oddprmgt2  12427  infpnlem1  12653  lmodvsdi  14044
  Copyright terms: Public domain W3C validator