| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exp4b | Unicode version | ||
| Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| exp4b.1 |
|
| Ref | Expression |
|---|---|
| exp4b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exp4b.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | exp4a 366 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: exp43 372 reuss2 3461 nndi 6595 mulnqprl 7716 mulnqpru 7717 distrlem5prl 7734 distrlem5pru 7735 recexprlemss1l 7783 recexprlemss1u 7784 lemul12a 8970 nnmulcl 9092 elfz0fzfz0 10283 fzo1fzo0n0 10344 fzofzim 10349 elincfzoext 10359 elfzodifsumelfzo 10367 le2sq2 10797 swrdswrd 11196 swrdccat3blem 11230 oddprmgt2 12571 infpnlem1 12797 lmodvsdi 14188 |
| Copyright terms: Public domain | W3C validator |