ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exp4b Unicode version

Theorem exp4b 367
Description: An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
Hypothesis
Ref Expression
exp4b.1  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
Assertion
Ref Expression
exp4b  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )

Proof of Theorem exp4b
StepHypRef Expression
1 exp4b.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ch  /\  th )  ->  ta )
)
21ex 115 . 2  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )
32exp4a 366 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  exp43  372  reuss2  3417  nndi  6489  mulnqprl  7569  mulnqpru  7570  distrlem5prl  7587  distrlem5pru  7588  recexprlemss1l  7636  recexprlemss1u  7637  lemul12a  8821  nnmulcl  8942  elfz0fzfz0  10128  fzo1fzo0n0  10185  fzofzim  10190  elfzodifsumelfzo  10203  le2sq2  10598  oddprmgt2  12136  infpnlem1  12359  lmodvsdi  13406
  Copyright terms: Public domain W3C validator