ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exsimpl GIF version

Theorem exsimpl 1605
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
exsimpl (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)

Proof of Theorem exsimpl
StepHypRef Expression
1 simpl 108 . 2 ((𝜑𝜓) → 𝜑)
21eximi 1588 1 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.40  1619  euex  2044  moexexdc  2098  elex  2737  sbc5  2974  dmcoss  4873  fmptco  5651  brabvv  5888  brtpos2  6219
  Copyright terms: Public domain W3C validator