![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exsimpl | GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1611 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 19.40 1642 euex 2072 moexexdc 2126 elex 2771 sbc5 3009 dmcoss 4931 fmptco 5724 brabvv 5964 brtpos2 6304 |
Copyright terms: Public domain | W3C validator |