ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptco Unicode version

Theorem fmptco 5731
Description: Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation ( x + 2 ) and  G the equation ( 3 * z ) then  ( G  o.  F
) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
fmptco.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptco.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptco.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptco  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, A    x, y, B    y, R    ph, x    x, S    y, T
Allowed substitution hints:    ph( y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptco
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5169 . 2  |-  Rel  ( G  o.  F )
2 funmpt 5297 . . 3  |-  Fun  (
x  e.  A  |->  T )
3 funrel 5276 . . 3  |-  ( Fun  ( x  e.  A  |->  T )  ->  Rel  ( x  e.  A  |->  T ) )
42, 3ax-mp 5 . 2  |-  Rel  (
x  e.  A  |->  T )
5 fmptco.1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
6 eqid 2196 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
75, 6fmptd 5719 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> B )
8 fmptco.2 . . . . . . . . . . . . 13  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
98feq1d 5397 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> B 
<->  ( x  e.  A  |->  R ) : A --> B ) )
107, 9mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
11 ffun 5413 . . . . . . . . . . 11  |-  ( F : A --> B  ->  Fun  F )
1210, 11syl 14 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
13 funbrfv 5602 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z F u  ->  ( F `
 z )  =  u ) )
1413imp 124 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z F u )  -> 
( F `  z
)  =  u )
1512, 14sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  z F u )  ->  ( F `  z )  =  u )
1615eqcomd 2202 . . . . . . . 8  |-  ( (
ph  /\  z F u )  ->  u  =  ( F `  z ) )
1716a1d 22 . . . . . . 7  |-  ( (
ph  /\  z F u )  ->  (
u G w  ->  u  =  ( F `  z ) ) )
1817expimpd 363 . . . . . 6  |-  ( ph  ->  ( ( z F u  /\  u G w )  ->  u  =  ( F `  z ) ) )
1918pm4.71rd 394 . . . . 5  |-  ( ph  ->  ( ( z F u  /\  u G w )  <->  ( u  =  ( F `  z )  /\  (
z F u  /\  u G w ) ) ) )
2019exbidv 1839 . . . 4  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) ) ) )
21 exsimpl 1631 . . . . . . 7  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  ->  E. u  u  =  ( F `  z
) )
22 isset 2769 . . . . . . 7  |-  ( ( F `  z )  e.  _V  <->  E. u  u  =  ( F `  z ) )
2321, 22sylibr 134 . . . . . 6  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  ->  ( F `  z )  e.  _V )
2423a1i 9 . . . . 5  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  ->  ( F `  z )  e.  _V ) )
2512adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  Fun  F )
26 fdm 5416 . . . . . . . . . . 11  |-  ( F : A --> B  ->  dom  F  =  A )
2710, 26syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
2827eleq2d 2266 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z  e.  A ) )
2928biimpar 297 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  dom  F )
30 funfvex 5578 . . . . . . . 8  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
3125, 29, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  _V )
3231adantrr 479 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )  -> 
( F `  z
)  e.  _V )
3332ex 115 . . . . 5  |-  ( ph  ->  ( ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T )  ->  ( F `  z )  e.  _V ) )
34 breq2 4038 . . . . . . . . 9  |-  ( u  =  ( F `  z )  ->  (
z F u  <->  z F
( F `  z
) ) )
35 breq1 4037 . . . . . . . . 9  |-  ( u  =  ( F `  z )  ->  (
u G w  <->  ( F `  z ) G w ) )
3634, 35anbi12d 473 . . . . . . . 8  |-  ( u  =  ( F `  z )  ->  (
( z F u  /\  u G w )  <->  ( z F ( F `  z
)  /\  ( F `  z ) G w ) ) )
3736ceqsexgv 2893 . . . . . . 7  |-  ( ( F `  z )  e.  _V  ->  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  <-> 
( z F ( F `  z )  /\  ( F `  z ) G w ) ) )
38 funfvbrb 5678 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  dom  F  <->  z F
( F `  z
) ) )
3912, 38syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z F ( F `
 z ) ) )
4039, 28bitr3d 190 . . . . . . . . 9  |-  ( ph  ->  ( z F ( F `  z )  <-> 
z  e.  A ) )
418fveq1d 5563 . . . . . . . . . 10  |-  ( ph  ->  ( F `  z
)  =  ( ( x  e.  A  |->  R ) `  z ) )
42 fmptco.3 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
43 eqidd 2197 . . . . . . . . . 10  |-  ( ph  ->  w  =  w )
4441, 42, 43breq123d 4048 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  z ) G w  <-> 
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) )
4540, 44anbi12d 473 . . . . . . . 8  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) ) )
46 nfcv 2339 . . . . . . . . . . 11  |-  F/_ x
z
47 nfv 1542 . . . . . . . . . . . 12  |-  F/ x ph
48 nffvmpt1 5572 . . . . . . . . . . . . . 14  |-  F/_ x
( ( x  e.  A  |->  R ) `  z )
49 nfcv 2339 . . . . . . . . . . . . . 14  |-  F/_ x
( y  e.  B  |->  S )
50 nfcv 2339 . . . . . . . . . . . . . 14  |-  F/_ x w
5148, 49, 50nfbr 4080 . . . . . . . . . . . . 13  |-  F/ x
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w
52 nfcsb1v 3117 . . . . . . . . . . . . . 14  |-  F/_ x [_ z  /  x ]_ T
5352nfeq2 2351 . . . . . . . . . . . . 13  |-  F/ x  w  =  [_ z  /  x ]_ T
5451, 53nfbi 1603 . . . . . . . . . . . 12  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T )
5547, 54nfim 1586 . . . . . . . . . . 11  |-  F/ x
( ph  ->  ( ( ( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) )
56 fveq2 5561 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  e.  A  |->  R ) `  x
)  =  ( ( x  e.  A  |->  R ) `  z ) )
5756breq1d 4044 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w ) )
58 csbeq1a 3093 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  T  =  [_ z  /  x ]_ T )
5958eqeq2d 2208 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
w  =  T  <->  w  =  [_ z  /  x ]_ T ) )
6057, 59bibi12d 235 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( y  e.  B  |->  S ) w  <->  w  =  T )  <->  ( (
( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) ) )
6160imbi2d 230 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ph  ->  ( ( ( x  e.  A  |->  R ) `  x
) ( y  e.  B  |->  S ) w  <-> 
w  =  T ) )  <->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) ) )
62 vex 2766 . . . . . . . . . . . . . 14  |-  w  e. 
_V
63 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  y  =  R )
6463eleq1d 2265 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  R  /\  u  =  w )  ->  ( y  e.  B  <->  R  e.  B ) )
65 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  u  =  w )
66 fmptco.4 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  R  ->  S  =  T )
6766adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  S  =  T )
6865, 67eqeq12d 2211 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  R  /\  u  =  w )  ->  ( u  =  S  <-> 
w  =  T ) )
6964, 68anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  ( ( y  e.  B  /\  u  =  S )  <->  ( R  e.  B  /\  w  =  T ) ) )
70 df-mpt 4097 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  |->  S )  =  { <. y ,  u >.  |  (
y  e.  B  /\  u  =  S ) }
7169, 70brabga 4299 . . . . . . . . . . . . . 14  |-  ( ( R  e.  B  /\  w  e.  _V )  ->  ( R ( y  e.  B  |->  S ) w  <->  ( R  e.  B  /\  w  =  T ) ) )
725, 62, 71sylancl 413 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( y  e.  B  |->  S ) w  <-> 
( R  e.  B  /\  w  =  T
) ) )
73 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
746fvmpt2 5648 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  R  e.  B )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
7573, 5, 74syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
7675breq1d 4044 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  R ( y  e.  B  |->  S ) w ) )
775biantrurd 305 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
w  =  T  <->  ( R  e.  B  /\  w  =  T ) ) )
7872, 76, 773bitr4d 220 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T
) )
7978expcom 116 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T ) ) )
8046, 55, 61, 79vtoclgaf 2829 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) )
8180impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) )
8281pm5.32da 452 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8345, 82bitrd 188 . . . . . . 7  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T ) ) )
8437, 83sylan9bbr 463 . . . . . 6  |-  ( (
ph  /\  ( F `  z )  e.  _V )  ->  ( E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8584ex 115 . . . . 5  |-  ( ph  ->  ( ( F `  z )  e.  _V  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) ) )
8624, 33, 85pm5.21ndd 706 . . . 4  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8720, 86bitrd 188 . . 3  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
88 vex 2766 . . . 4  |-  z  e. 
_V
8988, 62opelco 4839 . . 3  |-  ( <.
z ,  w >.  e.  ( G  o.  F
)  <->  E. u ( z F u  /\  u G w ) )
90 df-mpt 4097 . . . . 5  |-  ( x  e.  A  |->  T )  =  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) }
9190eleq2i 2263 . . . 4  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  <. z ,  w >.  e.  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) } )
92 nfv 1542 . . . . . 6  |-  F/ x  z  e.  A
9352nfeq2 2351 . . . . . 6  |-  F/ x  v  =  [_ z  /  x ]_ T
9492, 93nfan 1579 . . . . 5  |-  F/ x
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )
95 nfv 1542 . . . . 5  |-  F/ v ( z  e.  A  /\  w  =  [_ z  /  x ]_ T )
96 eleq1 2259 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
9758eqeq2d 2208 . . . . . 6  |-  ( x  =  z  ->  (
v  =  T  <->  v  =  [_ z  /  x ]_ T ) )
9896, 97anbi12d 473 . . . . 5  |-  ( x  =  z  ->  (
( x  e.  A  /\  v  =  T
)  <->  ( z  e.  A  /\  v  = 
[_ z  /  x ]_ T ) ) )
99 eqeq1 2203 . . . . . 6  |-  ( v  =  w  ->  (
v  =  [_ z  /  x ]_ T  <->  w  =  [_ z  /  x ]_ T ) )
10099anbi2d 464 . . . . 5  |-  ( v  =  w  ->  (
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
10194, 95, 88, 62, 98, 100opelopabf 4310 . . . 4  |-  ( <.
z ,  w >.  e. 
{ <. x ,  v
>.  |  ( x  e.  A  /\  v  =  T ) }  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10291, 101bitri 184 . . 3  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10387, 89, 1023bitr4g 223 . 2  |-  ( ph  ->  ( <. z ,  w >.  e.  ( G  o.  F )  <->  <. z ,  w >.  e.  (
x  e.  A  |->  T ) ) )
1041, 4, 103eqrelrdv 4760 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   [_csb 3084   <.cop 3626   class class class wbr 4034   {copab 4094    |-> cmpt 4095   dom cdm 4664    o. ccom 4668   Rel wrel 4669   Fun wfun 5253   -->wf 5255   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by:  fmptcof  5732  cofmpt  5734  fcompt  5735  fcoconst  5736  ofco  6158  prdsidlem  13149  pws0g  13153  pwsinvg  13314  pwssub  13315  gsumfzmhm2  13550  psrlinv  14312  lmcn2  14600  cdivcncfap  14924  negfcncf  14926  dvcj  15029  dvfre  15030  dvmptcjx  15044  plyco  15079  plycjlemc  15080
  Copyright terms: Public domain W3C validator