ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptco Unicode version

Theorem fmptco 5748
Description: Composition of two functions expressed as ordered-pair class abstractions. If  F has the equation ( x + 2 ) and  G the equation ( 3 * z ) then  ( G  o.  F
) has the equation ( 3 * ( x + 2 ) ) . (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
fmptco.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptco.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptco.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptco  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, A    x, y, B    y, R    ph, x    x, S    y, T
Allowed substitution hints:    ph( y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptco
Dummy variables  v  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5182 . 2  |-  Rel  ( G  o.  F )
2 funmpt 5310 . . 3  |-  Fun  (
x  e.  A  |->  T )
3 funrel 5289 . . 3  |-  ( Fun  ( x  e.  A  |->  T )  ->  Rel  ( x  e.  A  |->  T ) )
42, 3ax-mp 5 . 2  |-  Rel  (
x  e.  A  |->  T )
5 fmptco.1 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  R  e.  B )
6 eqid 2205 . . . . . . . . . . . . 13  |-  ( x  e.  A  |->  R )  =  ( x  e.  A  |->  R )
75, 6fmptd 5736 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  A  |->  R ) : A --> B )
8 fmptco.2 . . . . . . . . . . . . 13  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
98feq1d 5414 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> B 
<->  ( x  e.  A  |->  R ) : A --> B ) )
107, 9mpbird 167 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> B )
11 ffun 5430 . . . . . . . . . . 11  |-  ( F : A --> B  ->  Fun  F )
1210, 11syl 14 . . . . . . . . . 10  |-  ( ph  ->  Fun  F )
13 funbrfv 5619 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z F u  ->  ( F `
 z )  =  u ) )
1413imp 124 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z F u )  -> 
( F `  z
)  =  u )
1512, 14sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  z F u )  ->  ( F `  z )  =  u )
1615eqcomd 2211 . . . . . . . 8  |-  ( (
ph  /\  z F u )  ->  u  =  ( F `  z ) )
1716a1d 22 . . . . . . 7  |-  ( (
ph  /\  z F u )  ->  (
u G w  ->  u  =  ( F `  z ) ) )
1817expimpd 363 . . . . . 6  |-  ( ph  ->  ( ( z F u  /\  u G w )  ->  u  =  ( F `  z ) ) )
1918pm4.71rd 394 . . . . 5  |-  ( ph  ->  ( ( z F u  /\  u G w )  <->  ( u  =  ( F `  z )  /\  (
z F u  /\  u G w ) ) ) )
2019exbidv 1848 . . . 4  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) ) ) )
21 exsimpl 1640 . . . . . . 7  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  ->  E. u  u  =  ( F `  z
) )
22 isset 2778 . . . . . . 7  |-  ( ( F `  z )  e.  _V  <->  E. u  u  =  ( F `  z ) )
2321, 22sylibr 134 . . . . . 6  |-  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  ->  ( F `  z )  e.  _V )
2423a1i 9 . . . . 5  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  ->  ( F `  z )  e.  _V ) )
2512adantr 276 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  Fun  F )
26 fdm 5433 . . . . . . . . . . 11  |-  ( F : A --> B  ->  dom  F  =  A )
2710, 26syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
2827eleq2d 2275 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z  e.  A ) )
2928biimpar 297 . . . . . . . 8  |-  ( (
ph  /\  z  e.  A )  ->  z  e.  dom  F )
30 funfvex 5595 . . . . . . . 8  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
3125, 29, 30syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  e.  _V )
3231adantrr 479 . . . . . 6  |-  ( (
ph  /\  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )  -> 
( F `  z
)  e.  _V )
3332ex 115 . . . . 5  |-  ( ph  ->  ( ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T )  ->  ( F `  z )  e.  _V ) )
34 breq2 4049 . . . . . . . . 9  |-  ( u  =  ( F `  z )  ->  (
z F u  <->  z F
( F `  z
) ) )
35 breq1 4048 . . . . . . . . 9  |-  ( u  =  ( F `  z )  ->  (
u G w  <->  ( F `  z ) G w ) )
3634, 35anbi12d 473 . . . . . . . 8  |-  ( u  =  ( F `  z )  ->  (
( z F u  /\  u G w )  <->  ( z F ( F `  z
)  /\  ( F `  z ) G w ) ) )
3736ceqsexgv 2902 . . . . . . 7  |-  ( ( F `  z )  e.  _V  ->  ( E. u ( u  =  ( F `  z
)  /\  ( z F u  /\  u G w ) )  <-> 
( z F ( F `  z )  /\  ( F `  z ) G w ) ) )
38 funfvbrb 5695 . . . . . . . . . . 11  |-  ( Fun 
F  ->  ( z  e.  dom  F  <->  z F
( F `  z
) ) )
3912, 38syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  dom  F  <-> 
z F ( F `
 z ) ) )
4039, 28bitr3d 190 . . . . . . . . 9  |-  ( ph  ->  ( z F ( F `  z )  <-> 
z  e.  A ) )
418fveq1d 5580 . . . . . . . . . 10  |-  ( ph  ->  ( F `  z
)  =  ( ( x  e.  A  |->  R ) `  z ) )
42 fmptco.3 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
43 eqidd 2206 . . . . . . . . . 10  |-  ( ph  ->  w  =  w )
4441, 42, 43breq123d 4059 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  z ) G w  <-> 
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) )
4540, 44anbi12d 473 . . . . . . . 8  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w ) ) )
46 nfcv 2348 . . . . . . . . . . 11  |-  F/_ x
z
47 nfv 1551 . . . . . . . . . . . 12  |-  F/ x ph
48 nffvmpt1 5589 . . . . . . . . . . . . . 14  |-  F/_ x
( ( x  e.  A  |->  R ) `  z )
49 nfcv 2348 . . . . . . . . . . . . . 14  |-  F/_ x
( y  e.  B  |->  S )
50 nfcv 2348 . . . . . . . . . . . . . 14  |-  F/_ x w
5148, 49, 50nfbr 4091 . . . . . . . . . . . . 13  |-  F/ x
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w
52 nfcsb1v 3126 . . . . . . . . . . . . . 14  |-  F/_ x [_ z  /  x ]_ T
5352nfeq2 2360 . . . . . . . . . . . . 13  |-  F/ x  w  =  [_ z  /  x ]_ T
5451, 53nfbi 1612 . . . . . . . . . . . 12  |-  F/ x
( ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T )
5547, 54nfim 1595 . . . . . . . . . . 11  |-  F/ x
( ph  ->  ( ( ( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) )
56 fveq2 5578 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  (
( x  e.  A  |->  R ) `  x
)  =  ( ( x  e.  A  |->  R ) `  z ) )
5756breq1d 4055 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  ( ( x  e.  A  |->  R ) `
 z ) ( y  e.  B  |->  S ) w ) )
58 csbeq1a 3102 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  T  =  [_ z  /  x ]_ T )
5958eqeq2d 2217 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
w  =  T  <->  w  =  [_ z  /  x ]_ T ) )
6057, 59bibi12d 235 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( ( ( x  e.  A  |->  R ) `
 x ) ( y  e.  B  |->  S ) w  <->  w  =  T )  <->  ( (
( x  e.  A  |->  R ) `  z
) ( y  e.  B  |->  S ) w  <-> 
w  =  [_ z  /  x ]_ T ) ) )
6160imbi2d 230 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( ph  ->  ( ( ( x  e.  A  |->  R ) `  x
) ( y  e.  B  |->  S ) w  <-> 
w  =  T ) )  <->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) ) )
62 vex 2775 . . . . . . . . . . . . . 14  |-  w  e. 
_V
63 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  y  =  R )
6463eleq1d 2274 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  R  /\  u  =  w )  ->  ( y  e.  B  <->  R  e.  B ) )
65 simpr 110 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  u  =  w )
66 fmptco.4 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  R  ->  S  =  T )
6766adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( y  =  R  /\  u  =  w )  ->  S  =  T )
6865, 67eqeq12d 2220 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  R  /\  u  =  w )  ->  ( u  =  S  <-> 
w  =  T ) )
6964, 68anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( ( y  =  R  /\  u  =  w )  ->  ( ( y  e.  B  /\  u  =  S )  <->  ( R  e.  B  /\  w  =  T ) ) )
70 df-mpt 4108 . . . . . . . . . . . . . . 15  |-  ( y  e.  B  |->  S )  =  { <. y ,  u >.  |  (
y  e.  B  /\  u  =  S ) }
7169, 70brabga 4311 . . . . . . . . . . . . . 14  |-  ( ( R  e.  B  /\  w  e.  _V )  ->  ( R ( y  e.  B  |->  S ) w  <->  ( R  e.  B  /\  w  =  T ) ) )
725, 62, 71sylancl 413 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  ( R ( y  e.  B  |->  S ) w  <-> 
( R  e.  B  /\  w  =  T
) ) )
73 simpr 110 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  A )
746fvmpt2 5665 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  R  e.  B )  ->  ( ( x  e.  A  |->  R ) `  x )  =  R )
7573, 5, 74syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  R ) `  x
)  =  R )
7675breq1d 4055 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  R ( y  e.  B  |->  S ) w ) )
775biantrurd 305 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  (
w  =  T  <->  ( R  e.  B  /\  w  =  T ) ) )
7872, 76, 773bitr4d 220 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T
) )
7978expcom 116 . . . . . . . . . . 11  |-  ( x  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  x ) ( y  e.  B  |->  S ) w  <->  w  =  T ) ) )
8046, 55, 61, 79vtoclgaf 2838 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( ph  ->  ( ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) ) )
8180impcom 125 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  A )  ->  (
( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w  <->  w  =  [_ z  /  x ]_ T ) )
8281pm5.32da 452 . . . . . . . 8  |-  ( ph  ->  ( ( z  e.  A  /\  ( ( x  e.  A  |->  R ) `  z ) ( y  e.  B  |->  S ) w )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8345, 82bitrd 188 . . . . . . 7  |-  ( ph  ->  ( ( z F ( F `  z
)  /\  ( F `  z ) G w )  <->  ( z  e.  A  /\  w  = 
[_ z  /  x ]_ T ) ) )
8437, 83sylan9bbr 463 . . . . . 6  |-  ( (
ph  /\  ( F `  z )  e.  _V )  ->  ( E. u
( u  =  ( F `  z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8584ex 115 . . . . 5  |-  ( ph  ->  ( ( F `  z )  e.  _V  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) ) )
8624, 33, 85pm5.21ndd 707 . . . 4  |-  ( ph  ->  ( E. u ( u  =  ( F `
 z )  /\  ( z F u  /\  u G w ) )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
8720, 86bitrd 188 . . 3  |-  ( ph  ->  ( E. u ( z F u  /\  u G w )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
88 vex 2775 . . . 4  |-  z  e. 
_V
8988, 62opelco 4851 . . 3  |-  ( <.
z ,  w >.  e.  ( G  o.  F
)  <->  E. u ( z F u  /\  u G w ) )
90 df-mpt 4108 . . . . 5  |-  ( x  e.  A  |->  T )  =  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) }
9190eleq2i 2272 . . . 4  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  <. z ,  w >.  e.  { <. x ,  v >.  |  ( x  e.  A  /\  v  =  T ) } )
92 nfv 1551 . . . . . 6  |-  F/ x  z  e.  A
9352nfeq2 2360 . . . . . 6  |-  F/ x  v  =  [_ z  /  x ]_ T
9492, 93nfan 1588 . . . . 5  |-  F/ x
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )
95 nfv 1551 . . . . 5  |-  F/ v ( z  e.  A  /\  w  =  [_ z  /  x ]_ T )
96 eleq1 2268 . . . . . 6  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
9758eqeq2d 2217 . . . . . 6  |-  ( x  =  z  ->  (
v  =  T  <->  v  =  [_ z  /  x ]_ T ) )
9896, 97anbi12d 473 . . . . 5  |-  ( x  =  z  ->  (
( x  e.  A  /\  v  =  T
)  <->  ( z  e.  A  /\  v  = 
[_ z  /  x ]_ T ) ) )
99 eqeq1 2212 . . . . . 6  |-  ( v  =  w  ->  (
v  =  [_ z  /  x ]_ T  <->  w  =  [_ z  /  x ]_ T ) )
10099anbi2d 464 . . . . 5  |-  ( v  =  w  ->  (
( z  e.  A  /\  v  =  [_ z  /  x ]_ T )  <-> 
( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) ) )
10194, 95, 88, 62, 98, 100opelopabf 4322 . . . 4  |-  ( <.
z ,  w >.  e. 
{ <. x ,  v
>.  |  ( x  e.  A  /\  v  =  T ) }  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10291, 101bitri 184 . . 3  |-  ( <.
z ,  w >.  e.  ( x  e.  A  |->  T )  <->  ( z  e.  A  /\  w  =  [_ z  /  x ]_ T ) )
10387, 89, 1023bitr4g 223 . 2  |-  ( ph  ->  ( <. z ,  w >.  e.  ( G  o.  F )  <->  <. z ,  w >.  e.  (
x  e.  A  |->  T ) ) )
1041, 4, 103eqrelrdv 4772 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   [_csb 3093   <.cop 3636   class class class wbr 4045   {copab 4105    |-> cmpt 4106   dom cdm 4676    o. ccom 4680   Rel wrel 4681   Fun wfun 5266   -->wf 5268   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by:  fmptcof  5749  cofmpt  5751  fcompt  5752  fcoconst  5753  ofco  6179  prdsidlem  13312  pws0g  13316  pwsinvg  13477  pwssub  13478  gsumfzmhm2  13713  psrlinv  14479  lmcn2  14785  cdivcncfap  15109  negfcncf  15111  dvcj  15214  dvfre  15215  dvmptcjx  15229  plyco  15264  plycjlemc  15265
  Copyright terms: Public domain W3C validator