Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brabvv | Unicode version |
Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Jim Kingdon, 16-Jan-2019.) |
Ref | Expression |
---|---|
brabvv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3962 | . . . . . 6 | |
2 | elopab 4213 | . . . . . 6 | |
3 | 1, 2 | bitri 183 | . . . . 5 |
4 | exsimpl 1594 | . . . . . 6 | |
5 | 4 | eximi 1577 | . . . . 5 |
6 | 3, 5 | sylbi 120 | . . . 4 |
7 | vex 2712 | . . . . . . . 8 | |
8 | vex 2712 | . . . . . . . 8 | |
9 | 7, 8 | opth 4192 | . . . . . . 7 |
10 | 9 | biimpi 119 | . . . . . 6 |
11 | 10 | eqcoms 2157 | . . . . 5 |
12 | 11 | 2eximi 1578 | . . . 4 |
13 | 6, 12 | syl 14 | . . 3 |
14 | eeanv 1909 | . . 3 | |
15 | 13, 14 | sylib 121 | . 2 |
16 | isset 2715 | . . 3 | |
17 | isset 2715 | . . 3 | |
18 | 16, 17 | anbi12i 456 | . 2 |
19 | 15, 18 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wex 1469 wcel 2125 cvv 2709 cop 3559 class class class wbr 3961 copab 4020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |