| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcoss | Unicode version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1542 |
. . . 4
| |
| 2 | exsimpl 1663 |
. . . . 5
| |
| 3 | vex 2802 |
. . . . . 6
| |
| 4 | vex 2802 |
. . . . . 6
| |
| 5 | 3, 4 | opelco 4893 |
. . . . 5
|
| 6 | breq2 4086 |
. . . . . 6
| |
| 7 | 6 | cbvexv 1965 |
. . . . 5
|
| 8 | 2, 5, 7 | 3imtr4i 201 |
. . . 4
|
| 9 | 1, 8 | exlimi 1640 |
. . 3
|
| 10 | 3 | eldm2 4920 |
. . 3
|
| 11 | 3 | eldm 4919 |
. . 3
|
| 12 | 9, 10, 11 | 3imtr4i 201 |
. 2
|
| 13 | 12 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-co 4727 df-dm 4728 |
| This theorem is referenced by: rncoss 4994 dmcosseq 4995 cossxp 5250 funco 5357 cofunexg 6252 casefun 7248 djufun 7267 ctssdccl 7274 znleval 14611 |
| Copyright terms: Public domain | W3C validator |