| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcoss | Unicode version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1520 |
. . . 4
| |
| 2 | exsimpl 1641 |
. . . . 5
| |
| 3 | vex 2776 |
. . . . . 6
| |
| 4 | vex 2776 |
. . . . . 6
| |
| 5 | 3, 4 | opelco 4858 |
. . . . 5
|
| 6 | breq2 4055 |
. . . . . 6
| |
| 7 | 6 | cbvexv 1943 |
. . . . 5
|
| 8 | 2, 5, 7 | 3imtr4i 201 |
. . . 4
|
| 9 | 1, 8 | exlimi 1618 |
. . 3
|
| 10 | 3 | eldm2 4885 |
. . 3
|
| 11 | 3 | eldm 4884 |
. . 3
|
| 12 | 9, 10, 11 | 3imtr4i 201 |
. 2
|
| 13 | 12 | ssriv 3201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-co 4692 df-dm 4693 |
| This theorem is referenced by: rncoss 4958 dmcosseq 4959 cossxp 5214 funco 5320 cofunexg 6207 casefun 7202 djufun 7221 ctssdccl 7228 znleval 14490 |
| Copyright terms: Public domain | W3C validator |