ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcoss Unicode version

Theorem dmcoss 4766
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss  |-  dom  ( A  o.  B )  C_ 
dom  B

Proof of Theorem dmcoss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 1455 . . . 4  |-  F/ y E. y  x B y
2 exsimpl 1579 . . . . 5  |-  ( E. z ( x B z  /\  z A y )  ->  E. z  x B z )
3 vex 2660 . . . . . 6  |-  x  e. 
_V
4 vex 2660 . . . . . 6  |-  y  e. 
_V
53, 4opelco 4671 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  <->  E. z ( x B z  /\  z A y ) )
6 breq2 3899 . . . . . 6  |-  ( y  =  z  ->  (
x B y  <->  x B
z ) )
76cbvexv 1870 . . . . 5  |-  ( E. y  x B y  <->  E. z  x B
z )
82, 5, 73imtr4i 200 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  ->  E. y  x B y )
91, 8exlimi 1556 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  o.  B )  ->  E. y  x B y )
103eldm2 4697 . . 3  |-  ( x  e.  dom  ( A  o.  B )  <->  E. y <. x ,  y >.  e.  ( A  o.  B
) )
113eldm 4696 . . 3  |-  ( x  e.  dom  B  <->  E. y  x B y )
129, 10, 113imtr4i 200 . 2  |-  ( x  e.  dom  ( A  o.  B )  ->  x  e.  dom  B )
1312ssriv 3067 1  |-  dom  ( A  o.  B )  C_ 
dom  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1451    e. wcel 1463    C_ wss 3037   <.cop 3496   class class class wbr 3895   dom cdm 4499    o. ccom 4503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-co 4508  df-dm 4509
This theorem is referenced by:  rncoss  4767  dmcosseq  4768  cossxp  5019  funco  5121  cofunexg  5963  casefun  6922  djufun  6941  ctssdccl  6948
  Copyright terms: Public domain W3C validator