ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcoss Unicode version

Theorem dmcoss 4993
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss  |-  dom  ( A  o.  B )  C_ 
dom  B

Proof of Theorem dmcoss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 1542 . . . 4  |-  F/ y E. y  x B y
2 exsimpl 1663 . . . . 5  |-  ( E. z ( x B z  /\  z A y )  ->  E. z  x B z )
3 vex 2802 . . . . . 6  |-  x  e. 
_V
4 vex 2802 . . . . . 6  |-  y  e. 
_V
53, 4opelco 4893 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  <->  E. z ( x B z  /\  z A y ) )
6 breq2 4086 . . . . . 6  |-  ( y  =  z  ->  (
x B y  <->  x B
z ) )
76cbvexv 1965 . . . . 5  |-  ( E. y  x B y  <->  E. z  x B
z )
82, 5, 73imtr4i 201 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  ->  E. y  x B y )
91, 8exlimi 1640 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  o.  B )  ->  E. y  x B y )
103eldm2 4920 . . 3  |-  ( x  e.  dom  ( A  o.  B )  <->  E. y <. x ,  y >.  e.  ( A  o.  B
) )
113eldm 4919 . . 3  |-  ( x  e.  dom  B  <->  E. y  x B y )
129, 10, 113imtr4i 201 . 2  |-  ( x  e.  dom  ( A  o.  B )  ->  x  e.  dom  B )
1312ssriv 3228 1  |-  dom  ( A  o.  B )  C_ 
dom  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104   E.wex 1538    e. wcel 2200    C_ wss 3197   <.cop 3669   class class class wbr 4082   dom cdm 4718    o. ccom 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-co 4727  df-dm 4728
This theorem is referenced by:  rncoss  4994  dmcosseq  4995  cossxp  5250  funco  5357  cofunexg  6252  casefun  7248  djufun  7267  ctssdccl  7274  znleval  14611
  Copyright terms: Public domain W3C validator