Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmcoss | Unicode version |
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmcoss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1484 | . . . 4 | |
2 | exsimpl 1605 | . . . . 5 | |
3 | vex 2729 | . . . . . 6 | |
4 | vex 2729 | . . . . . 6 | |
5 | 3, 4 | opelco 4776 | . . . . 5 |
6 | breq2 3986 | . . . . . 6 | |
7 | 6 | cbvexv 1906 | . . . . 5 |
8 | 2, 5, 7 | 3imtr4i 200 | . . . 4 |
9 | 1, 8 | exlimi 1582 | . . 3 |
10 | 3 | eldm2 4802 | . . 3 |
11 | 3 | eldm 4801 | . . 3 |
12 | 9, 10, 11 | 3imtr4i 200 | . 2 |
13 | 12 | ssriv 3146 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wex 1480 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 cdm 4604 ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-co 4613 df-dm 4614 |
This theorem is referenced by: rncoss 4874 dmcosseq 4875 cossxp 5126 funco 5228 cofunexg 6077 casefun 7050 djufun 7069 ctssdccl 7076 |
Copyright terms: Public domain | W3C validator |