ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcoss Unicode version

Theorem dmcoss 4854
Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcoss  |-  dom  ( A  o.  B )  C_ 
dom  B

Proof of Theorem dmcoss
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfe1 1476 . . . 4  |-  F/ y E. y  x B y
2 exsimpl 1597 . . . . 5  |-  ( E. z ( x B z  /\  z A y )  ->  E. z  x B z )
3 vex 2715 . . . . . 6  |-  x  e. 
_V
4 vex 2715 . . . . . 6  |-  y  e. 
_V
53, 4opelco 4757 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  <->  E. z ( x B z  /\  z A y ) )
6 breq2 3969 . . . . . 6  |-  ( y  =  z  ->  (
x B y  <->  x B
z ) )
76cbvexv 1898 . . . . 5  |-  ( E. y  x B y  <->  E. z  x B
z )
82, 5, 73imtr4i 200 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  B
)  ->  E. y  x B y )
91, 8exlimi 1574 . . 3  |-  ( E. y <. x ,  y
>.  e.  ( A  o.  B )  ->  E. y  x B y )
103eldm2 4783 . . 3  |-  ( x  e.  dom  ( A  o.  B )  <->  E. y <. x ,  y >.  e.  ( A  o.  B
) )
113eldm 4782 . . 3  |-  ( x  e.  dom  B  <->  E. y  x B y )
129, 10, 113imtr4i 200 . 2  |-  ( x  e.  dom  ( A  o.  B )  ->  x  e.  dom  B )
1312ssriv 3132 1  |-  dom  ( A  o.  B )  C_ 
dom  B
Colors of variables: wff set class
Syntax hints:    /\ wa 103   E.wex 1472    e. wcel 2128    C_ wss 3102   <.cop 3563   class class class wbr 3965   dom cdm 4585    o. ccom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-co 4594  df-dm 4595
This theorem is referenced by:  rncoss  4855  dmcosseq  4856  cossxp  5107  funco  5209  cofunexg  6056  casefun  7023  djufun  7042  ctssdccl  7049
  Copyright terms: Public domain W3C validator