| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmcoss | Unicode version | ||
| Description: Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmcoss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1510 |
. . . 4
| |
| 2 | exsimpl 1631 |
. . . . 5
| |
| 3 | vex 2766 |
. . . . . 6
| |
| 4 | vex 2766 |
. . . . . 6
| |
| 5 | 3, 4 | opelco 4839 |
. . . . 5
|
| 6 | breq2 4038 |
. . . . . 6
| |
| 7 | 6 | cbvexv 1933 |
. . . . 5
|
| 8 | 2, 5, 7 | 3imtr4i 201 |
. . . 4
|
| 9 | 1, 8 | exlimi 1608 |
. . 3
|
| 10 | 3 | eldm2 4865 |
. . 3
|
| 11 | 3 | eldm 4864 |
. . 3
|
| 12 | 9, 10, 11 | 3imtr4i 201 |
. 2
|
| 13 | 12 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-co 4673 df-dm 4674 |
| This theorem is referenced by: rncoss 4937 dmcosseq 4938 cossxp 5193 funco 5299 cofunexg 6175 casefun 7160 djufun 7179 ctssdccl 7186 znleval 14285 |
| Copyright terms: Public domain | W3C validator |