ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin Unicode version

Theorem fin 5404
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )

Proof of Theorem fin
StepHypRef Expression
1 ssin 3359 . . . 4  |-  ( ( ran  F  C_  B  /\  ran  F  C_  C
)  <->  ran  F  C_  ( B  i^i  C ) )
21anbi2i 457 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
3 anandi 590 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
42, 3bitr3i 186 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C ) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
5 df-f 5222 . 2  |-  ( F : A --> ( B  i^i  C )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
6 df-f 5222 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
7 df-f 5222 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
86, 7anbi12i 460 . 2  |-  ( ( F : A --> B  /\  F : A --> C )  <-> 
( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C )
) )
94, 5, 83bitr4i 212 1  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    i^i cin 3130    C_ wss 3131   ran crn 4629    Fn wfn 5213   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-f 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator