ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin Unicode version

Theorem fin 5245
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )

Proof of Theorem fin
StepHypRef Expression
1 ssin 3245 . . . 4  |-  ( ( ran  F  C_  B  /\  ran  F  C_  C
)  <->  ran  F  C_  ( B  i^i  C ) )
21anbi2i 448 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
3 anandi 560 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
42, 3bitr3i 185 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C ) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
5 df-f 5063 . 2  |-  ( F : A --> ( B  i^i  C )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
6 df-f 5063 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
7 df-f 5063 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
86, 7anbi12i 451 . 2  |-  ( ( F : A --> B  /\  F : A --> C )  <-> 
( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C )
) )
94, 5, 83bitr4i 211 1  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    i^i cin 3020    C_ wss 3021   ran crn 4478    Fn wfn 5054   -->wf 5055
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-f 5063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator