ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin Unicode version

Theorem fin 5355
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )

Proof of Theorem fin
StepHypRef Expression
1 ssin 3329 . . . 4  |-  ( ( ran  F  C_  B  /\  ran  F  C_  C
)  <->  ran  F  C_  ( B  i^i  C ) )
21anbi2i 453 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
3 anandi 580 . . 3  |-  ( ( F  Fn  A  /\  ( ran  F  C_  B  /\  ran  F  C_  C
) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
42, 3bitr3i 185 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C ) )  <->  ( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C
) ) )
5 df-f 5173 . 2  |-  ( F : A --> ( B  i^i  C )  <->  ( F  Fn  A  /\  ran  F  C_  ( B  i^i  C
) ) )
6 df-f 5173 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
7 df-f 5173 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
86, 7anbi12i 456 . 2  |-  ( ( F : A --> B  /\  F : A --> C )  <-> 
( ( F  Fn  A  /\  ran  F  C_  B )  /\  ( F  Fn  A  /\  ran  F  C_  C )
) )
94, 5, 83bitr4i 211 1  |-  ( F : A --> ( B  i^i  C )  <->  ( F : A --> B  /\  F : A --> C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    i^i cin 3101    C_ wss 3102   ran crn 4586    Fn wfn 5164   -->wf 5165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-ss 3115  df-f 5173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator