ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandi Unicode version

Theorem anandi 590
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.)
Assertion
Ref Expression
anandi  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )

Proof of Theorem anandi
StepHypRef Expression
1 anidm 396 . . 3  |-  ( (
ph  /\  ph )  <->  ph )
21anbi1i 458 . 2  |-  ( ( ( ph  /\  ph )  /\  ( ps  /\  ch ) )  <->  ( ph  /\  ( ps  /\  ch ) ) )
3 an4 586 . 2  |-  ( ( ( ph  /\  ph )  /\  ( ps  /\  ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )
42, 3bitr3i 186 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anandi3  992  moanim  2110  difundi  3399  inrab  3419  uniin  3841  xpcom  5187  fin  5414  fndmin  5636  nnaord  6524  ixpin  6737  ltexprlemdisj  7619  bldisj  14197  blininf  14220
  Copyright terms: Public domain W3C validator