ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anandi Unicode version

Theorem anandi 592
Description: Distribution of conjunction over conjunction. (Contributed by NM, 14-Aug-1995.)
Assertion
Ref Expression
anandi  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )

Proof of Theorem anandi
StepHypRef Expression
1 anidm 396 . . 3  |-  ( (
ph  /\  ph )  <->  ph )
21anbi1i 458 . 2  |-  ( ( ( ph  /\  ph )  /\  ( ps  /\  ch ) )  <->  ( ph  /\  ( ps  /\  ch ) ) )
3 an4 586 . 2  |-  ( ( ( ph  /\  ph )  /\  ( ps  /\  ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )
42, 3bitr3i 186 1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ( ph  /\  ps )  /\  ( ph  /\  ch )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anandi3  1015  moanim  2152  difundi  3456  inrab  3476  uniin  3908  xpcom  5275  fin  5512  fndmin  5742  nnaord  6655  ixpin  6870  ltexprlemdisj  7793  bldisj  15075  blininf  15098  lgsquadlem3  15758  wlkeq  16065
  Copyright terms: Public domain W3C validator