ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fintm Unicode version

Theorem fintm 5373
Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
fintm.1  |-  E. x  x  e.  B
Assertion
Ref Expression
fintm  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fintm
StepHypRef Expression
1 ssint 3840 . . . 4  |-  ( ran 
F  C_  |^| B  <->  A. x  e.  B  ran  F  C_  x )
21anbi2i 453 . . 3  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <-> 
( F  Fn  A  /\  A. x  e.  B  ran  F  C_  x )
)
3 fintm.1 . . . 4  |-  E. x  x  e.  B
4 r19.28mv 3501 . . . 4  |-  ( E. x  x  e.  B  ->  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F  C_  x ) ) )
53, 4ax-mp 5 . . 3  |-  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F 
C_  x ) )
62, 5bitr4i 186 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x
) )
7 df-f 5192 . 2  |-  ( F : A --> |^| B  <->  ( F  Fn  A  /\  ran  F  C_  |^| B ) )
8 df-f 5192 . . 3  |-  ( F : A --> x  <->  ( F  Fn  A  /\  ran  F  C_  x ) )
98ralbii 2472 . 2  |-  ( A. x  e.  B  F : A --> x  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x ) )
106, 7, 93bitr4i 211 1  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   A.wral 2444    C_ wss 3116   |^|cint 3824   ran crn 4605    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-int 3825  df-f 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator