ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fintm Unicode version

Theorem fintm 5439
Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
fintm.1  |-  E. x  x  e.  B
Assertion
Ref Expression
fintm  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fintm
StepHypRef Expression
1 ssint 3886 . . . 4  |-  ( ran 
F  C_  |^| B  <->  A. x  e.  B  ran  F  C_  x )
21anbi2i 457 . . 3  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <-> 
( F  Fn  A  /\  A. x  e.  B  ran  F  C_  x )
)
3 fintm.1 . . . 4  |-  E. x  x  e.  B
4 r19.28mv 3539 . . . 4  |-  ( E. x  x  e.  B  ->  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F  C_  x ) ) )
53, 4ax-mp 5 . . 3  |-  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F 
C_  x ) )
62, 5bitr4i 187 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x
) )
7 df-f 5258 . 2  |-  ( F : A --> |^| B  <->  ( F  Fn  A  /\  ran  F  C_  |^| B ) )
8 df-f 5258 . . 3  |-  ( F : A --> x  <->  ( F  Fn  A  /\  ran  F  C_  x ) )
98ralbii 2500 . 2  |-  ( A. x  e.  B  F : A --> x  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x ) )
106, 7, 93bitr4i 212 1  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3153   |^|cint 3870   ran crn 4660    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-int 3871  df-f 5258
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator