ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg Unicode version

Theorem fabexg 5442
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)    D( x)    F( x)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4774 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
2 pwexg 4210 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
3 fabexg.1 . . . . 5  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
4 fssxp 5422 . . . . . . . 8  |-  ( x : A --> B  ->  x  C_  ( A  X.  B ) )
5 velpw 3609 . . . . . . . 8  |-  ( x  e.  ~P ( A  X.  B )  <->  x  C_  ( A  X.  B ) )
64, 5sylibr 134 . . . . . . 7  |-  ( x : A --> B  ->  x  e.  ~P ( A  X.  B ) )
76anim1i 340 . . . . . 6  |-  ( ( x : A --> B  /\  ph )  ->  ( x  e.  ~P ( A  X.  B )  /\  ph ) )
87ss2abi 3252 . . . . 5  |-  { x  |  ( x : A --> B  /\  ph ) }  C_  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }
93, 8eqsstri 3212 . . . 4  |-  F  C_  { x  |  ( x  e.  ~P ( A  X.  B )  /\  ph ) }
10 ssab2 3264 . . . 4  |-  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }  C_  ~P ( A  X.  B )
119, 10sstri 3189 . . 3  |-  F  C_  ~P ( A  X.  B
)
12 ssexg 4169 . . 3  |-  ( ( F  C_  ~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  F  e.  _V )
1311, 12mpan 424 . 2  |-  ( ~P ( A  X.  B
)  e.  _V  ->  F  e.  _V )
141, 2, 133syl 17 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602    X. cxp 4658   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259
This theorem is referenced by:  fabex  5443  f1oabexg  5513
  Copyright terms: Public domain W3C validator