ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg Unicode version

Theorem fabexg 5375
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)    D( x)    F( x)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4718 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
2 pwexg 4159 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
3 fabexg.1 . . . . 5  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
4 fssxp 5355 . . . . . . . 8  |-  ( x : A --> B  ->  x  C_  ( A  X.  B ) )
5 velpw 3566 . . . . . . . 8  |-  ( x  e.  ~P ( A  X.  B )  <->  x  C_  ( A  X.  B ) )
64, 5sylibr 133 . . . . . . 7  |-  ( x : A --> B  ->  x  e.  ~P ( A  X.  B ) )
76anim1i 338 . . . . . 6  |-  ( ( x : A --> B  /\  ph )  ->  ( x  e.  ~P ( A  X.  B )  /\  ph ) )
87ss2abi 3214 . . . . 5  |-  { x  |  ( x : A --> B  /\  ph ) }  C_  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }
93, 8eqsstri 3174 . . . 4  |-  F  C_  { x  |  ( x  e.  ~P ( A  X.  B )  /\  ph ) }
10 ssab2 3226 . . . 4  |-  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }  C_  ~P ( A  X.  B )
119, 10sstri 3151 . . 3  |-  F  C_  ~P ( A  X.  B
)
12 ssexg 4121 . . 3  |-  ( ( F  C_  ~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  F  e.  _V )
1311, 12mpan 421 . 2  |-  ( ~P ( A  X.  B
)  e.  _V  ->  F  e.  _V )
141, 2, 133syl 17 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559    X. cxp 4602   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192
This theorem is referenced by:  fabex  5376  f1oabexg  5444
  Copyright terms: Public domain W3C validator