ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg Unicode version

Theorem fabexg 5485
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
Assertion
Ref Expression
fabexg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)    D( x)    F( x)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4807 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  X.  B
)  e.  _V )
2 pwexg 4240 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ~P ( A  X.  B
)  e.  _V )
3 fabexg.1 . . . . 5  |-  F  =  { x  |  ( x : A --> B  /\  ph ) }
4 fssxp 5463 . . . . . . . 8  |-  ( x : A --> B  ->  x  C_  ( A  X.  B ) )
5 velpw 3633 . . . . . . . 8  |-  ( x  e.  ~P ( A  X.  B )  <->  x  C_  ( A  X.  B ) )
64, 5sylibr 134 . . . . . . 7  |-  ( x : A --> B  ->  x  e.  ~P ( A  X.  B ) )
76anim1i 340 . . . . . 6  |-  ( ( x : A --> B  /\  ph )  ->  ( x  e.  ~P ( A  X.  B )  /\  ph ) )
87ss2abi 3273 . . . . 5  |-  { x  |  ( x : A --> B  /\  ph ) }  C_  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }
93, 8eqsstri 3233 . . . 4  |-  F  C_  { x  |  ( x  e.  ~P ( A  X.  B )  /\  ph ) }
10 ssab2 3285 . . . 4  |-  { x  |  ( x  e. 
~P ( A  X.  B )  /\  ph ) }  C_  ~P ( A  X.  B )
119, 10sstri 3210 . . 3  |-  F  C_  ~P ( A  X.  B
)
12 ssexg 4199 . . 3  |-  ( ( F  C_  ~P ( A  X.  B )  /\  ~P ( A  X.  B
)  e.  _V )  ->  F  e.  _V )
1311, 12mpan 424 . 2  |-  ( ~P ( A  X.  B
)  e.  _V  ->  F  e.  _V )
141, 2, 133syl 17 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   _Vcvv 2776    C_ wss 3174   ~Pcpw 3626    X. cxp 4691   -->wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-fun 5292  df-fn 5293  df-f 5294
This theorem is referenced by:  fabex  5486  f1oabexg  5556
  Copyright terms: Public domain W3C validator