ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin GIF version

Theorem fin 5404
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))

Proof of Theorem fin
StepHypRef Expression
1 ssin 3359 . . . 4 ((ran 𝐹𝐵 ∧ ran 𝐹𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶))
21anbi2i 457 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
3 anandi 590 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
42, 3bitr3i 186 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
5 df-f 5222 . 2 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
6 df-f 5222 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7 df-f 5222 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
86, 7anbi12i 460 . 2 ((𝐹:𝐴𝐵𝐹:𝐴𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
94, 5, 83bitr4i 212 1 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  cin 3130  wss 3131  ran crn 4629   Fn wfn 5213  wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-f 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator