ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu GIF version

Theorem hbeu 2066
Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
Hypothesis
Ref Expression
hbeu.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbeu (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)

Proof of Theorem hbeu
StepHypRef Expression
1 hbeu.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21nfi 1476 . . 3 𝑥𝜑
32nfeu 2064 . 2 𝑥∃!𝑦𝜑
43nfri 1533 1 (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  ∃!weu 2045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048
This theorem is referenced by:  hbmo  2084  2eu7  2139
  Copyright terms: Public domain W3C validator