Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbeu | GIF version |
Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.) |
Ref | Expression |
---|---|
hbeu.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbeu | ⊢ (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeu.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nfi 1455 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | 2 | nfeu 2038 | . 2 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
4 | 3 | nfri 1512 | 1 ⊢ (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃!weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 |
This theorem is referenced by: hbmo 2058 2eu7 2113 |
Copyright terms: Public domain | W3C validator |