ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu GIF version

Theorem hbeu 2035
Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
Hypothesis
Ref Expression
hbeu.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbeu (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)

Proof of Theorem hbeu
StepHypRef Expression
1 hbeu.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21nfi 1450 . . 3 𝑥𝜑
32nfeu 2033 . 2 𝑥∃!𝑦𝜑
43nfri 1507 1 (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017
This theorem is referenced by:  hbmo  2053  2eu7  2108
  Copyright terms: Public domain W3C validator