Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbeu | GIF version |
Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.) |
Ref | Expression |
---|---|
hbeu.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbeu | ⊢ (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeu.1 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | nfi 1450 | . . 3 ⊢ Ⅎ𝑥𝜑 |
3 | 2 | nfeu 2033 | . 2 ⊢ Ⅎ𝑥∃!𝑦𝜑 |
4 | 3 | nfri 1507 | 1 ⊢ (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃!weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 |
This theorem is referenced by: hbmo 2053 2eu7 2108 |
Copyright terms: Public domain | W3C validator |