ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbeu GIF version

Theorem hbeu 2076
Description: Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
Hypothesis
Ref Expression
hbeu.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbeu (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)

Proof of Theorem hbeu
StepHypRef Expression
1 hbeu.1 . . . 4 (𝜑 → ∀𝑥𝜑)
21nfi 1486 . . 3 𝑥𝜑
32nfeu 2074 . 2 𝑥∃!𝑦𝜑
43nfri 1543 1 (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058
This theorem is referenced by:  hbmo  2094  2eu7  2149
  Copyright terms: Public domain W3C validator