| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2eu7 | Unicode version | ||
| Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 2eu7 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbe1 1509 | 
. . . 4
 | |
| 2 | 1 | hbeu 2066 | 
. . 3
 | 
| 3 | 2 | euan 2101 | 
. 2
 | 
| 4 | ancom 266 | 
. . . . 5
 | |
| 5 | 4 | eubii 2054 | 
. . . 4
 | 
| 6 | hbe1 1509 | 
. . . . 5
 | |
| 7 | 6 | euan 2101 | 
. . . 4
 | 
| 8 | ancom 266 | 
. . . 4
 | |
| 9 | 5, 7, 8 | 3bitri 206 | 
. . 3
 | 
| 10 | 9 | eubii 2054 | 
. 2
 | 
| 11 | ancom 266 | 
. 2
 | |
| 12 | 3, 10, 11 | 3bitr4ri 213 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |