ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu7 Unicode version

Theorem 2eu7 2172
Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.)
Assertion
Ref Expression
2eu7  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  E! x E! y ( E. x ph  /\  E. y ph ) )

Proof of Theorem 2eu7
StepHypRef Expression
1 hbe1 1541 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
21hbeu 2098 . . 3  |-  ( E! y E. x ph  ->  A. x E! y E. x ph )
32euan 2134 . 2  |-  ( E! x ( E! y E. x ph  /\  E. y ph )  <->  ( E! y E. x ph  /\  E! x E. y ph ) )
4 ancom 266 . . . . 5  |-  ( ( E. x ph  /\  E. y ph )  <->  ( E. y ph  /\  E. x ph ) )
54eubii 2086 . . . 4  |-  ( E! y ( E. x ph  /\  E. y ph ) 
<->  E! y ( E. y ph  /\  E. x ph ) )
6 hbe1 1541 . . . . 5  |-  ( E. y ph  ->  A. y E. y ph )
76euan 2134 . . . 4  |-  ( E! y ( E. y ph  /\  E. x ph ) 
<->  ( E. y ph  /\  E! y E. x ph ) )
8 ancom 266 . . . 4  |-  ( ( E. y ph  /\  E! y E. x ph ) 
<->  ( E! y E. x ph  /\  E. y ph ) )
95, 7, 83bitri 206 . . 3  |-  ( E! y ( E. x ph  /\  E. y ph ) 
<->  ( E! y E. x ph  /\  E. y ph ) )
109eubii 2086 . 2  |-  ( E! x E! y ( E. x ph  /\  E. y ph )  <->  E! x
( E! y E. x ph  /\  E. y ph ) )
11 ancom 266 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E! y E. x ph  /\  E! x E. y ph ) )
123, 10, 113bitr4ri 213 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  E! x E! y ( E. x ph  /\  E. y ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1538   E!weu 2077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator