ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eu7 Unicode version

Theorem 2eu7 2042
Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.)
Assertion
Ref Expression
2eu7  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  E! x E! y ( E. x ph  /\  E. y ph ) )

Proof of Theorem 2eu7
StepHypRef Expression
1 hbe1 1429 . . . 4  |-  ( E. x ph  ->  A. x E. x ph )
21hbeu 1969 . . 3  |-  ( E! y E. x ph  ->  A. x E! y E. x ph )
32euan 2004 . 2  |-  ( E! x ( E! y E. x ph  /\  E. y ph )  <->  ( E! y E. x ph  /\  E! x E. y ph ) )
4 ancom 262 . . . . 5  |-  ( ( E. x ph  /\  E. y ph )  <->  ( E. y ph  /\  E. x ph ) )
54eubii 1957 . . . 4  |-  ( E! y ( E. x ph  /\  E. y ph ) 
<->  E! y ( E. y ph  /\  E. x ph ) )
6 hbe1 1429 . . . . 5  |-  ( E. y ph  ->  A. y E. y ph )
76euan 2004 . . . 4  |-  ( E! y ( E. y ph  /\  E. x ph ) 
<->  ( E. y ph  /\  E! y E. x ph ) )
8 ancom 262 . . . 4  |-  ( ( E. y ph  /\  E! y E. x ph ) 
<->  ( E! y E. x ph  /\  E. y ph ) )
95, 7, 83bitri 204 . . 3  |-  ( E! y ( E. x ph  /\  E. y ph ) 
<->  ( E! y E. x ph  /\  E. y ph ) )
109eubii 1957 . 2  |-  ( E! x E! y ( E. x ph  /\  E. y ph )  <->  E! x
( E! y E. x ph  /\  E. y ph ) )
11 ancom 262 . 2  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  ( E! y E. x ph  /\  E! x E. y ph ) )
123, 10, 113bitr4ri 211 1  |-  ( ( E! x E. y ph  /\  E! y E. x ph )  <->  E! x E! y ( E. x ph  /\  E. y ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1426   E!weu 1948
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator