| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2eu7 | Unicode version | ||
| Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2eu7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1519 |
. . . 4
| |
| 2 | 1 | hbeu 2076 |
. . 3
|
| 3 | 2 | euan 2112 |
. 2
|
| 4 | ancom 266 |
. . . . 5
| |
| 5 | 4 | eubii 2064 |
. . . 4
|
| 6 | hbe1 1519 |
. . . . 5
| |
| 7 | 6 | euan 2112 |
. . . 4
|
| 8 | ancom 266 |
. . . 4
| |
| 9 | 5, 7, 8 | 3bitri 206 |
. . 3
|
| 10 | 9 | eubii 2064 |
. 2
|
| 11 | ancom 266 |
. 2
| |
| 12 | 3, 10, 11 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |