| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 |
|
| Ref | Expression |
|---|---|
| eubii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | eubidv 2053 |
. 2
|
| 4 | 3 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-eu 2048 |
| This theorem is referenced by: cbveu 2069 2eu7 2139 reubiia 2682 cbvreu 2727 reuv 2782 euxfr2dc 2949 euxfrdc 2950 2reuswapdc 2968 reuun2 3447 zfnuleu 4158 copsexg 4278 funeu2 5285 funcnv3 5321 fneu2 5366 tz6.12 5589 f1ompt 5716 fsn 5737 climreu 11479 divalgb 12107 gsum0g 13098 txcn 14595 |
| Copyright terms: Public domain | W3C validator |