Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubii | Unicode version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 |
Ref | Expression |
---|---|
eubii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | eubidv 2022 | . 2 |
4 | 3 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wtru 1344 weu 2014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-eu 2017 |
This theorem is referenced by: cbveu 2038 2eu7 2108 reubiia 2650 cbvreu 2690 reuv 2745 euxfr2dc 2911 euxfrdc 2912 2reuswapdc 2930 reuun2 3405 zfnuleu 4106 copsexg 4222 funeu2 5214 funcnv3 5250 fneu2 5293 tz6.12 5514 f1ompt 5636 fsn 5657 climreu 11238 divalgb 11862 txcn 12915 |
Copyright terms: Public domain | W3C validator |