| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 |
|
| Ref | Expression |
|---|---|
| eubii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | eubidv 2085 |
. 2
|
| 4 | 3 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-eu 2080 |
| This theorem is referenced by: cbveu 2101 2eu7 2172 reubiia 2717 cbvreu 2763 reuv 2819 euxfr2dc 2988 euxfrdc 2989 2reuswapdc 3007 reuun2 3487 zfnuleu 4208 copsexg 4330 funeu2 5344 funcnv3 5383 fneu2 5428 tz6.12 5655 f1ompt 5786 fsn 5807 climreu 11808 divalgb 12436 gsum0g 13429 txcn 14949 |
| Copyright terms: Public domain | W3C validator |