Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eubii | Unicode version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 |
Ref | Expression |
---|---|
eubii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 | |
2 | 1 | a1i 9 | . . 3 |
3 | 2 | eubidv 2014 | . 2 |
4 | 3 | mptru 1344 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wtru 1336 weu 2006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-eu 2009 |
This theorem is referenced by: cbveu 2030 2eu7 2100 reubiia 2641 cbvreu 2678 reuv 2731 euxfr2dc 2897 euxfrdc 2898 2reuswapdc 2916 reuun2 3390 zfnuleu 4088 copsexg 4203 funeu2 5193 funcnv3 5229 fneu2 5272 tz6.12 5493 f1ompt 5615 fsn 5636 climreu 11176 divalgb 11797 txcn 12635 |
Copyright terms: Public domain | W3C validator |