ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii Unicode version

Theorem eubii 2035
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
eubii  |-  ( E! x ph  <->  E! x ps )

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32eubidv 2034 . 2  |-  ( T. 
->  ( E! x ph  <->  E! x ps ) )
43mptru 1362 1  |-  ( E! x ph  <->  E! x ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1354   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-eu 2029
This theorem is referenced by:  cbveu  2050  2eu7  2120  reubiia  2662  cbvreu  2702  reuv  2757  euxfr2dc  2923  euxfrdc  2924  2reuswapdc  2942  reuun2  3419  zfnuleu  4128  copsexg  4245  funeu2  5243  funcnv3  5279  fneu2  5322  tz6.12  5544  f1ompt  5668  fsn  5689  climreu  11305  divalgb  11930  txcn  13778
  Copyright terms: Public domain W3C validator