ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii Unicode version

Theorem eubii 2064
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
eubii  |-  ( E! x ph  <->  E! x ps )

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32eubidv 2063 . 2  |-  ( T. 
->  ( E! x ph  <->  E! x ps ) )
43mptru 1382 1  |-  ( E! x ph  <->  E! x ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1374   E!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-eu 2058
This theorem is referenced by:  cbveu  2079  2eu7  2150  reubiia  2694  cbvreu  2740  reuv  2796  euxfr2dc  2965  euxfrdc  2966  2reuswapdc  2984  reuun2  3464  zfnuleu  4184  copsexg  4306  funeu2  5316  funcnv3  5355  fneu2  5400  tz6.12  5627  f1ompt  5754  fsn  5775  climreu  11723  divalgb  12351  gsum0g  13343  txcn  14862
  Copyright terms: Public domain W3C validator