| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 |
|
| Ref | Expression |
|---|---|
| eubii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | eubidv 2063 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-eu 2058 |
| This theorem is referenced by: cbveu 2079 2eu7 2150 reubiia 2694 cbvreu 2740 reuv 2796 euxfr2dc 2965 euxfrdc 2966 2reuswapdc 2984 reuun2 3464 zfnuleu 4184 copsexg 4306 funeu2 5316 funcnv3 5355 fneu2 5400 tz6.12 5627 f1ompt 5754 fsn 5775 climreu 11723 divalgb 12351 gsum0g 13343 txcn 14862 |
| Copyright terms: Public domain | W3C validator |