| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 |
|
| Ref | Expression |
|---|---|
| eubii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | eubidv 2062 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-eu 2057 |
| This theorem is referenced by: cbveu 2078 2eu7 2148 reubiia 2691 cbvreu 2736 reuv 2791 euxfr2dc 2958 euxfrdc 2959 2reuswapdc 2977 reuun2 3456 zfnuleu 4169 copsexg 4289 funeu2 5298 funcnv3 5337 fneu2 5382 tz6.12 5606 f1ompt 5733 fsn 5754 climreu 11641 divalgb 12269 gsum0g 13261 txcn 14780 |
| Copyright terms: Public domain | W3C validator |