ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii Unicode version

Theorem eubii 2063
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
eubii  |-  ( E! x ph  <->  E! x ps )

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32eubidv 2062 . 2  |-  ( T. 
->  ( E! x ph  <->  E! x ps ) )
43mptru 1382 1  |-  ( E! x ph  <->  E! x ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1374   E!weu 2054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-eu 2057
This theorem is referenced by:  cbveu  2078  2eu7  2148  reubiia  2691  cbvreu  2736  reuv  2791  euxfr2dc  2958  euxfrdc  2959  2reuswapdc  2977  reuun2  3456  zfnuleu  4168  copsexg  4288  funeu2  5297  funcnv3  5336  fneu2  5381  tz6.12  5604  f1ompt  5731  fsn  5752  climreu  11608  divalgb  12236  gsum0g  13228  txcn  14747
  Copyright terms: Public domain W3C validator