![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eubii | Unicode version |
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eubii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | eubidv 2034 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | mptru 1362 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-eu 2029 |
This theorem is referenced by: cbveu 2050 2eu7 2120 reubiia 2661 cbvreu 2701 reuv 2756 euxfr2dc 2922 euxfrdc 2923 2reuswapdc 2941 reuun2 3418 zfnuleu 4127 copsexg 4244 funeu2 5242 funcnv3 5278 fneu2 5321 tz6.12 5543 f1ompt 5667 fsn 5688 climreu 11304 divalgb 11929 txcn 13711 |
Copyright terms: Public domain | W3C validator |