| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| eubii.1 | 
 | 
| Ref | Expression | 
|---|---|
| eubii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eubii.1 | 
. . . 4
 | |
| 2 | 1 | a1i 9 | 
. . 3
 | 
| 3 | 2 | eubidv 2053 | 
. 2
 | 
| 4 | 3 | mptru 1373 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-eu 2048 | 
| This theorem is referenced by: cbveu 2069 2eu7 2139 reubiia 2682 cbvreu 2727 reuv 2782 euxfr2dc 2949 euxfrdc 2950 2reuswapdc 2968 reuun2 3446 zfnuleu 4157 copsexg 4277 funeu2 5284 funcnv3 5320 fneu2 5363 tz6.12 5586 f1ompt 5713 fsn 5734 climreu 11462 divalgb 12090 gsum0g 13039 txcn 14511 | 
| Copyright terms: Public domain | W3C validator |