| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eubii | Unicode version | ||
| Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
| Ref | Expression |
|---|---|
| eubii.1 |
|
| Ref | Expression |
|---|---|
| eubii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubii.1 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | eubidv 2062 |
. 2
|
| 4 | 3 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-eu 2057 |
| This theorem is referenced by: cbveu 2078 2eu7 2148 reubiia 2691 cbvreu 2736 reuv 2791 euxfr2dc 2958 euxfrdc 2959 2reuswapdc 2977 reuun2 3456 zfnuleu 4168 copsexg 4288 funeu2 5297 funcnv3 5336 fneu2 5381 tz6.12 5604 f1ompt 5731 fsn 5752 climreu 11608 divalgb 12236 gsum0g 13228 txcn 14747 |
| Copyright terms: Public domain | W3C validator |