ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eubii Unicode version

Theorem eubii 2051
Description: Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
eubii  |-  ( E! x ph  <->  E! x ps )

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4  |-  ( ph  <->  ps )
21a1i 9 . . 3  |-  ( T. 
->  ( ph  <->  ps )
)
32eubidv 2050 . 2  |-  ( T. 
->  ( E! x ph  <->  E! x ps ) )
43mptru 1373 1  |-  ( E! x ph  <->  E! x ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   T. wtru 1365   E!weu 2042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-eu 2045
This theorem is referenced by:  cbveu  2066  2eu7  2136  reubiia  2679  cbvreu  2724  reuv  2779  euxfr2dc  2945  euxfrdc  2946  2reuswapdc  2964  reuun2  3442  zfnuleu  4153  copsexg  4273  funeu2  5280  funcnv3  5316  fneu2  5359  tz6.12  5582  f1ompt  5709  fsn  5730  climreu  11440  divalgb  12066  gsum0g  12979  txcn  14443
  Copyright terms: Public domain W3C validator