![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfs1v | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfs1v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbs1 1954 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | nfi 1473 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: nfsbxy 1958 nfsbxyt 1959 sbco3v 1985 sbcomxyyz 1988 sbnf2 1997 mo2n 2070 mo23 2083 mor 2084 clelab 2319 cbvralf 2718 cbvrexf 2719 cbvralsv 2742 cbvrexsv 2743 cbvrab 2758 sbhypf 2810 mob2 2941 reu2 2949 sbcralt 3063 sbcrext 3064 sbcralg 3065 sbcreug 3067 sbcel12g 3096 sbceqg 3097 cbvreucsf 3146 cbvrabcsf 3147 disjiun 4025 cbvopab1 4103 cbvopab1s 4105 csbopabg 4108 cbvmptf 4124 cbvmpt 4125 opelopabsb 4291 frind 4384 tfis 4616 findes 4636 opeliunxp 4715 ralxpf 4809 rexxpf 4810 cbviota 5221 csbiotag 5248 isarep1 5341 cbvriota 5885 csbriotag 5887 abrexex2g 6174 abrexex2 6178 dfoprab4f 6248 finexdc 6960 ssfirab 6992 uzind4s 9658 zsupcllemstep 12085 bezoutlemmain 12138 nnwosdc 12179 cbvrald 15350 bj-bdfindes 15511 bj-findes 15543 |
Copyright terms: Public domain | W3C validator |