| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbsb4 | GIF version | ||
| Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
| Ref | Expression |
|---|---|
| hbsb4.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
| Ref | Expression |
|---|---|
| hbsb4 | ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbsb4.1 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 2 | 1 | hbsb 1977 | . 2 ⊢ ([𝑤 / 𝑥]𝜑 → ∀𝑧[𝑤 / 𝑥]𝜑) |
| 3 | sbequ 1863 | . 2 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 4 | 2, 3 | dvelimALT 2038 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 [wsb 1785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: hbsb4t 2041 dvelimf 2043 |
| Copyright terms: Public domain | W3C validator |