![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbsb4 | GIF version |
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
Ref | Expression |
---|---|
hbsb4.1 | ⊢ (𝜑 → ∀𝑧𝜑) |
Ref | Expression |
---|---|
hbsb4 | ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb4.1 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
2 | 1 | hbsb 1959 | . 2 ⊢ ([𝑤 / 𝑥]𝜑 → ∀𝑧[𝑤 / 𝑥]𝜑) |
3 | sbequ 1850 | . 2 ⊢ (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
4 | 2, 3 | dvelimALT 2020 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1361 [wsb 1772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 |
This theorem is referenced by: hbsb4t 2023 dvelimf 2025 |
Copyright terms: Public domain | W3C validator |