ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb4 GIF version

Theorem hbsb4 2039
Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypothesis
Ref Expression
hbsb4.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
hbsb4 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))

Proof of Theorem hbsb4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hbsb4.1 . . 3 (𝜑 → ∀𝑧𝜑)
21hbsb 1976 . 2 ([𝑤 / 𝑥]𝜑 → ∀𝑧[𝑤 / 𝑥]𝜑)
3 sbequ 1862 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3dvelimALT 2037 1 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1370  [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  hbsb4t  2040  dvelimf  2042
  Copyright terms: Public domain W3C validator