Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalsei Unicode version

Theorem iffalsei 3510
 Description: Inference associated with iffalse 3509. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1
Assertion
Ref Expression
iffalsei

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2
2 iffalse 3509 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wn 3   wceq 1332  cif 3501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-11 1483  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-if 3502 This theorem is referenced by:  0tonninf  10316  sum0  11262  prod0  11459  ennnfonelem1  12087  dcapnconst  13572
 Copyright terms: Public domain W3C validator