ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalsei Unicode version

Theorem iffalsei 3529
Description: Inference associated with iffalse 3528. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1  |-  -.  ph
Assertion
Ref Expression
iffalsei  |-  if (
ph ,  A ,  B )  =  B

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2  |-  -.  ph
2 iffalse 3528 . 2  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1343   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  0tonninf  10374  sum0  11329  prod0  11526  ennnfonelem1  12340  dcapnconst  13939
  Copyright terms: Public domain W3C validator