| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalsei | Unicode version | ||
| Description: Inference associated with iffalse 3610. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 |
|
| Ref | Expression |
|---|---|
| iffalsei |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 |
. 2
| |
| 2 | iffalse 3610 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: 0tonninf 10662 sum0 11899 prod0 12096 ennnfonelem1 12978 vtxval0 15854 iedgval0 15855 nnnninfex 16388 dcapnconst 16429 |
| Copyright terms: Public domain | W3C validator |