Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iffalsei | Unicode version |
Description: Inference associated with iffalse 3509. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 |
Ref | Expression |
---|---|
iffalsei |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 | |
2 | iffalse 3509 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wceq 1332 cif 3501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-if 3502 |
This theorem is referenced by: 0tonninf 10316 sum0 11262 prod0 11459 ennnfonelem1 12087 dcapnconst 13572 |
Copyright terms: Public domain | W3C validator |