ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalsei Unicode version

Theorem iffalsei 3535
Description: Inference associated with iffalse 3534. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1  |-  -.  ph
Assertion
Ref Expression
iffalsei  |-  if (
ph ,  A ,  B )  =  B

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2  |-  -.  ph
2 iffalse 3534 . 2  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1348   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  0tonninf  10395  sum0  11351  prod0  11548  ennnfonelem1  12362  dcapnconst  14092
  Copyright terms: Public domain W3C validator