ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalsei Unicode version

Theorem iffalsei 3570
Description: Inference associated with iffalse 3569. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iffalsei.1  |-  -.  ph
Assertion
Ref Expression
iffalsei  |-  if (
ph ,  A ,  B )  =  B

Proof of Theorem iffalsei
StepHypRef Expression
1 iffalsei.1 . 2  |-  -.  ph
2 iffalse 3569 . 2  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
31, 2ax-mp 5 1  |-  if (
ph ,  A ,  B )  =  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3562
This theorem is referenced by:  0tonninf  10532  sum0  11553  prod0  11750  ennnfonelem1  12624  dcapnconst  15705
  Copyright terms: Public domain W3C validator