ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf Unicode version

Theorem 0tonninf 10549
Description: The mapping of zero into ℕ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
0tonninf  |-  ( I `
 0 )  =  ( x  e.  om  |->  (/) )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5562 . . . 4  |-  ( I `
 0 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 0 )
3 0xnn0 9335 . . . . 5  |-  0  e. NN0*
4 0nn0 9281 . . . . . . 7  |-  0  e.  NN0
5 nn0nepnf 9337 . . . . . . 7  |-  ( 0  e.  NN0  ->  0  =/= +oo )
64, 5ax-mp 5 . . . . . 6  |-  0  =/= +oo
76necomi 2452 . . . . 5  |- +oo  =/=  0
8 fvunsng 5759 . . . . 5  |-  ( ( 0  e. NN0*  /\ +oo  =/=  0 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
0 )  =  ( ( F  o.  `' G ) `  0
) )
93, 7, 8mp2an 426 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
0 )  =  ( ( F  o.  `' G ) `  0
)
10 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1110frechashgf1o 10537 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
12 f1ocnv 5520 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1311, 12ax-mp 5 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
14 f1of 5507 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1513, 14ax-mp 5 . . . . 5  |-  `' G : NN0 --> om
16 fvco3 5635 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  0  e.  NN0 )  -> 
( ( F  o.  `' G ) `  0
)  =  ( F `
 ( `' G `  0 ) ) )
1715, 4, 16mp2an 426 . . . 4  |-  ( ( F  o.  `' G
) `  0 )  =  ( F `  ( `' G `  0 ) )
182, 9, 173eqtri 2221 . . 3  |-  ( I `
 0 )  =  ( F `  ( `' G `  0 ) )
19 0zd 9355 . . . . . . 7  |-  ( T. 
->  0  e.  ZZ )
2019, 10frec2uz0d 10508 . . . . . 6  |-  ( T. 
->  ( G `  (/) )  =  0 )
2120mptru 1373 . . . . 5  |-  ( G `
 (/) )  =  0
22 peano1 4631 . . . . . 6  |-  (/)  e.  om
23 f1ocnvfv 5829 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
2411, 22, 23mp2an 426 . . . . 5  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
2521, 24ax-mp 5 . . . 4  |-  ( `' G `  0 )  =  (/)
2625fveq2i 5564 . . 3  |-  ( F `
 ( `' G `  0 ) )  =  ( F `  (/) )
27 eleq2 2260 . . . . . . 7  |-  ( n  =  (/)  ->  ( i  e.  n  <->  i  e.  (/) ) )
2827ifbid 3583 . . . . . 6  |-  ( n  =  (/)  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  (/) ,  1o ,  (/) ) )
2928mpteq2dv 4125 . . . . 5  |-  ( n  =  (/)  ->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )
30 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
31 omex 4630 . . . . . 6  |-  om  e.  _V
3231mptex 5791 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
3329, 30, 32fvmpt3i 5644 . . . 4  |-  ( (/)  e.  om  ->  ( F `  (/) )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )
3422, 33ax-mp 5 . . 3  |-  ( F `
 (/) )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )
3518, 26, 343eqtri 2221 . 2  |-  ( I `
 0 )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )
36 noel 3455 . . . 4  |-  -.  i  e.  (/)
3736iffalsei 3571 . . 3  |-  if ( i  e.  (/) ,  1o ,  (/) )  =  (/)
3837mpteq2i 4121 . 2  |-  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )  =  ( i  e.  om  |->  (/) )
39 eqidd 2197 . . 3  |-  ( i  =  x  ->  (/)  =  (/) )
4039cbvmptv 4130 . 2  |-  ( i  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
4135, 38, 403eqtri 2221 1  |-  ( I `
 0 )  =  ( x  e.  om  |->  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   T. wtru 1365    e. wcel 2167    =/= wne 2367    u. cun 3155   (/)c0 3451   ifcif 3562   {csn 3623   <.cop 3626    |-> cmpt 4095   omcom 4627    X. cxp 4662   `'ccnv 4663    o. ccom 4668   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925  freccfrec 6457   1oc1o 6476   0cc0 7896   1c1 7897    + caddc 7899   +oocpnf 8075   NN0cn0 9266  NN0*cxnn0 9329   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-xnn0 9330  df-z 9344  df-uz 9619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator