ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0tonninf Unicode version

Theorem 0tonninf 10395
Description: The mapping of zero into ℕ is the sequence of all zeroes. (Contributed by Jim Kingdon, 17-Jul-2022.)
Hypotheses
Ref Expression
fxnn0nninf.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
fxnn0nninf.f  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
fxnn0nninf.i  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
Assertion
Ref Expression
0tonninf  |-  ( I `
 0 )  =  ( x  e.  om  |->  (/) )
Distinct variable group:    i, n
Allowed substitution hints:    F( x, i, n)    G( x, i, n)    I( x, i, n)

Proof of Theorem 0tonninf
StepHypRef Expression
1 fxnn0nninf.i . . . . 5  |-  I  =  ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } )
21fveq1i 5497 . . . 4  |-  ( I `
 0 )  =  ( ( ( F  o.  `' G )  u.  { <. +oo , 
( om  X.  { 1o } ) >. } ) `
 0 )
3 0xnn0 9204 . . . . 5  |-  0  e. NN0*
4 0nn0 9150 . . . . . . 7  |-  0  e.  NN0
5 nn0nepnf 9206 . . . . . . 7  |-  ( 0  e.  NN0  ->  0  =/= +oo )
64, 5ax-mp 5 . . . . . 6  |-  0  =/= +oo
76necomi 2425 . . . . 5  |- +oo  =/=  0
8 fvunsng 5690 . . . . 5  |-  ( ( 0  e. NN0*  /\ +oo  =/=  0 )  ->  (
( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
0 )  =  ( ( F  o.  `' G ) `  0
) )
93, 7, 8mp2an 424 . . . 4  |-  ( ( ( F  o.  `' G )  u.  { <. +oo ,  ( om 
X.  { 1o }
) >. } ) ` 
0 )  =  ( ( F  o.  `' G ) `  0
)
10 fxnn0nninf.g . . . . . . . 8  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
1110frechashgf1o 10384 . . . . . . 7  |-  G : om
-1-1-onto-> NN0
12 f1ocnv 5455 . . . . . . 7  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
1311, 12ax-mp 5 . . . . . 6  |-  `' G : NN0
-1-1-onto-> om
14 f1of 5442 . . . . . 6  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
1513, 14ax-mp 5 . . . . 5  |-  `' G : NN0 --> om
16 fvco3 5567 . . . . 5  |-  ( ( `' G : NN0 --> om  /\  0  e.  NN0 )  -> 
( ( F  o.  `' G ) `  0
)  =  ( F `
 ( `' G `  0 ) ) )
1715, 4, 16mp2an 424 . . . 4  |-  ( ( F  o.  `' G
) `  0 )  =  ( F `  ( `' G `  0 ) )
182, 9, 173eqtri 2195 . . 3  |-  ( I `
 0 )  =  ( F `  ( `' G `  0 ) )
19 0zd 9224 . . . . . . 7  |-  ( T. 
->  0  e.  ZZ )
2019, 10frec2uz0d 10355 . . . . . 6  |-  ( T. 
->  ( G `  (/) )  =  0 )
2120mptru 1357 . . . . 5  |-  ( G `
 (/) )  =  0
22 peano1 4578 . . . . . 6  |-  (/)  e.  om
23 f1ocnvfv 5758 . . . . . 6  |-  ( ( G : om -1-1-onto-> NN0  /\  (/)  e.  om )  ->  ( ( G `
 (/) )  =  0  ->  ( `' G `  0 )  =  (/) ) )
2411, 22, 23mp2an 424 . . . . 5  |-  ( ( G `  (/) )  =  0  ->  ( `' G `  0 )  =  (/) )
2521, 24ax-mp 5 . . . 4  |-  ( `' G `  0 )  =  (/)
2625fveq2i 5499 . . 3  |-  ( F `
 ( `' G `  0 ) )  =  ( F `  (/) )
27 eleq2 2234 . . . . . . 7  |-  ( n  =  (/)  ->  ( i  e.  n  <->  i  e.  (/) ) )
2827ifbid 3547 . . . . . 6  |-  ( n  =  (/)  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  (/) ,  1o ,  (/) ) )
2928mpteq2dv 4080 . . . . 5  |-  ( n  =  (/)  ->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )
30 fxnn0nninf.f . . . . 5  |-  F  =  ( n  e.  om  |->  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )
31 omex 4577 . . . . . 6  |-  om  e.  _V
3231mptex 5722 . . . . 5  |-  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.  _V
3329, 30, 32fvmpt3i 5576 . . . 4  |-  ( (/)  e.  om  ->  ( F `  (/) )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )
3422, 33ax-mp 5 . . 3  |-  ( F `
 (/) )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )
3518, 26, 343eqtri 2195 . 2  |-  ( I `
 0 )  =  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )
36 noel 3418 . . . 4  |-  -.  i  e.  (/)
3736iffalsei 3535 . . 3  |-  if ( i  e.  (/) ,  1o ,  (/) )  =  (/)
3837mpteq2i 4076 . 2  |-  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )  =  ( i  e.  om  |->  (/) )
39 eqidd 2171 . . 3  |-  ( i  =  x  ->  (/)  =  (/) )
4039cbvmptv 4085 . 2  |-  ( i  e.  om  |->  (/) )  =  ( x  e.  om  |->  (/) )
4135, 38, 403eqtri 2195 1  |-  ( I `
 0 )  =  ( x  e.  om  |->  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   T. wtru 1349    e. wcel 2141    =/= wne 2340    u. cun 3119   (/)c0 3414   ifcif 3526   {csn 3583   <.cop 3586    |-> cmpt 4050   omcom 4574    X. cxp 4609   `'ccnv 4610    o. ccom 4615   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853  freccfrec 6369   1oc1o 6388   0cc0 7774   1c1 7775    + caddc 7777   +oocpnf 7951   NN0cn0 9135  NN0*cxnn0 9198   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator