Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst Unicode version

Theorem dcapnconst 15705
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 15687 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 15704 and in fact this theorem can be proved using dceqnconst 15704 as shown at dcapnconstALT 15706. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8013 . . . 4  |-  RR  e.  _V
21mptex 5788 . . 3  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V )
4 1zzd 9353 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  1  e.  ZZ )
5 0zd 9338 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  0  e.  ZZ )
6 breq1 4036 . . . . . . 7  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
76dcbid 839 . . . . . 6  |-  ( x  =  y  ->  (DECID  x #  0 
<-> DECID  y #  0 ) )
87rspccva 2867 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  -> DECID 
y #  0 )
94, 5, 8ifcldcd 3597 . . . 4  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  if ( y #  0 ,  1 ,  0 )  e.  ZZ )
109fmpttd 5717 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ )
11 0re 8026 . . . . . 6  |-  0  e.  RR
12 1zzd 9353 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
13 0zd 9338 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
14 0cn 8018 . . . . . . . . . . . 12  |-  0  e.  CC
15 apirr 8632 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  -.  0 #  0 )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  -.  0 #  0
1716olci 733 . . . . . . . . . 10  |-  ( 0 #  0  \/  -.  0 #  0 )
18 df-dc 836 . . . . . . . . . 10  |-  (DECID  0 #  0  <-> 
( 0 #  0  \/ 
-.  0 #  0 ) )
1917, 18mpbir 146 . . . . . . . . 9  |- DECID  0 #  0
2019a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0 #  0 )
2112, 13, 20ifcldcd 3597 . . . . . . 7  |-  ( T. 
->  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )
2221mptru 1373 . . . . . 6  |-  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ
23 breq1 4036 . . . . . . . 8  |-  ( y  =  0  ->  (
y #  0  <->  0 #  0
) )
2423ifbid 3582 . . . . . . 7  |-  ( y  =  0  ->  if ( y #  0 , 
1 ,  0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
25 eqid 2196 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )
2624, 25fvmptg 5637 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )  -> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
2711, 22, 26mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  if ( 0 #  0 ,  1 ,  0 )
2816iffalsei 3570 . . . . 5  |-  if ( 0 #  0 ,  1 ,  0 )  =  0
2927, 28eqtri 2217 . . . 4  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0
3029a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0 )
31 1ne0 9058 . . . . . 6  |-  1  =/=  0
32 breq1 4036 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y #  0  <->  z #  0
) )
3332ifbid 3582 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y #  0 , 
1 ,  0 )  =  if ( z #  0 ,  1 ,  0 ) )
34 rpre 9735 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  z  e.  RR )
36 1zzd 9353 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
37 0zd 9338 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
38 breq1 4036 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
3938dcbid 839 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x #  0 
<-> DECID  z #  0 ) )
40 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x #  0 )
4139, 40, 35rspcdva 2873 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  -> DECID 
z #  0 )
4236, 37, 41ifcldcd 3597 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  e.  ZZ )
4325, 33, 35, 42fvmptd3 5655 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  if ( z #  0 ,  1 ,  0 ) )
44 rpap0 9745 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z #  0 )
4544iftrued 3568 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4645adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4743, 46eqtrd 2229 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  1 )
4847neeq1d 2385 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  1  =/=  0 ) )
4931, 48mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =/=  0 )
5049ralrimiva 2570 . . . 4  |-  ( A. x  e.  RR DECID  x #  0  ->  A. z  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0 )
51 fveq2 5558 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x ) )
5251neeq1d 2385 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
5352cbvralv 2729 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x )  =/=  0 )
5450, 53sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 )
5510, 30, 543jca 1179 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) )
56 feq1 5390 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f : RR --> ZZ 
<->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ ) )
57 fveq1 5557 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  0
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 ) )
5857eqeq1d 2205 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f ` 
0 )  =  0  <-> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0 ) )
59 fveq1 5557 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  x
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x ) )
6059neeq1d 2385 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f `  x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6160ralbidv 2497 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( A. x  e.  RR+  ( f `  x
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6256, 58, 613anbi123d 1323 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 )  <->  ( (
y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) ) )
633, 55, 62elabd 2909 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364   T. wtru 1365   E.wex 1506    e. wcel 2167    =/= wne 2367   A.wral 2475   _Vcvv 2763   ifcif 3561   class class class wbr 4033    |-> cmpt 4094   -->wf 5254   ` cfv 5258   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880   # cap 8608   ZZcz 9326   RR+crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-z 9327  df-rp 9729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator