Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst Unicode version

Theorem dcapnconst 14092
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 14075 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 14091 and in fact this theorem can be proved using dceqnconst 14091 as shown at dcapnconstALT 14093. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7908 . . . 4  |-  RR  e.  _V
21mptex 5722 . . 3  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V )
4 1zzd 9239 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  1  e.  ZZ )
5 0zd 9224 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  0  e.  ZZ )
6 breq1 3992 . . . . . . 7  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
76dcbid 833 . . . . . 6  |-  ( x  =  y  ->  (DECID  x #  0 
<-> DECID  y #  0 ) )
87rspccva 2833 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  -> DECID 
y #  0 )
94, 5, 8ifcldcd 3561 . . . 4  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  if ( y #  0 ,  1 ,  0 )  e.  ZZ )
109fmpttd 5651 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ )
11 0re 7920 . . . . . 6  |-  0  e.  RR
12 1zzd 9239 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
13 0zd 9224 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
14 0cn 7912 . . . . . . . . . . . 12  |-  0  e.  CC
15 apirr 8524 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  -.  0 #  0 )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  -.  0 #  0
1716olci 727 . . . . . . . . . 10  |-  ( 0 #  0  \/  -.  0 #  0 )
18 df-dc 830 . . . . . . . . . 10  |-  (DECID  0 #  0  <-> 
( 0 #  0  \/ 
-.  0 #  0 ) )
1917, 18mpbir 145 . . . . . . . . 9  |- DECID  0 #  0
2019a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0 #  0 )
2112, 13, 20ifcldcd 3561 . . . . . . 7  |-  ( T. 
->  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )
2221mptru 1357 . . . . . 6  |-  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ
23 breq1 3992 . . . . . . . 8  |-  ( y  =  0  ->  (
y #  0  <->  0 #  0
) )
2423ifbid 3547 . . . . . . 7  |-  ( y  =  0  ->  if ( y #  0 , 
1 ,  0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
25 eqid 2170 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )
2624, 25fvmptg 5572 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )  -> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
2711, 22, 26mp2an 424 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  if ( 0 #  0 ,  1 ,  0 )
2816iffalsei 3535 . . . . 5  |-  if ( 0 #  0 ,  1 ,  0 )  =  0
2927, 28eqtri 2191 . . . 4  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0
3029a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0 )
31 1ne0 8946 . . . . . 6  |-  1  =/=  0
32 breq1 3992 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y #  0  <->  z #  0
) )
3332ifbid 3547 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y #  0 , 
1 ,  0 )  =  if ( z #  0 ,  1 ,  0 ) )
34 rpre 9617 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3534adantl 275 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  z  e.  RR )
36 1zzd 9239 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
37 0zd 9224 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
38 breq1 3992 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
3938dcbid 833 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x #  0 
<-> DECID  z #  0 ) )
40 simpl 108 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x #  0 )
4139, 40, 35rspcdva 2839 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  -> DECID 
z #  0 )
4236, 37, 41ifcldcd 3561 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  e.  ZZ )
4325, 33, 35, 42fvmptd3 5589 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  if ( z #  0 ,  1 ,  0 ) )
44 rpap0 9627 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z #  0 )
4544iftrued 3533 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4645adantl 275 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4743, 46eqtrd 2203 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  1 )
4847neeq1d 2358 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  1  =/=  0 ) )
4931, 48mpbiri 167 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =/=  0 )
5049ralrimiva 2543 . . . 4  |-  ( A. x  e.  RR DECID  x #  0  ->  A. z  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0 )
51 fveq2 5496 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x ) )
5251neeq1d 2358 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
5352cbvralv 2696 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x )  =/=  0 )
5450, 53sylib 121 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 )
5510, 30, 543jca 1172 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) )
56 feq1 5330 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f : RR --> ZZ 
<->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ ) )
57 fveq1 5495 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  0
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 ) )
5857eqeq1d 2179 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f ` 
0 )  =  0  <-> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0 ) )
59 fveq1 5495 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  x
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x ) )
6059neeq1d 2358 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f `  x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6160ralbidv 2470 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( A. x  e.  RR+  ( f `  x
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6256, 58, 613anbi123d 1307 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 )  <->  ( (
y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) ) )
633, 55, 62elabd 2875 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348   T. wtru 1349   E.wex 1485    e. wcel 2141    =/= wne 2340   A.wral 2448   _Vcvv 2730   ifcif 3526   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775   # cap 8500   ZZcz 9212   RR+crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-inn 8879  df-z 9213  df-rp 9611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator