| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconst | Unicode version | ||
| Description: Decidability of real
number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 16441 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 16458 and in fact this theorem can be proved using dceqnconst 16458 as shown at dcapnconstALT 16460. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dcapnconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 8141 |
. . . 4
| |
| 2 | 1 | mptex 5869 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1zzd 9481 |
. . . . 5
| |
| 5 | 0zd 9466 |
. . . . 5
| |
| 6 | breq1 4086 |
. . . . . . 7
| |
| 7 | 6 | dcbid 843 |
. . . . . 6
|
| 8 | 7 | rspccva 2906 |
. . . . 5
|
| 9 | 4, 5, 8 | ifcldcd 3640 |
. . . 4
|
| 10 | 9 | fmpttd 5792 |
. . 3
|
| 11 | 0re 8154 |
. . . . . 6
| |
| 12 | 1zzd 9481 |
. . . . . . . 8
| |
| 13 | 0zd 9466 |
. . . . . . . 8
| |
| 14 | 0cn 8146 |
. . . . . . . . . . . 12
| |
| 15 | apirr 8760 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
|
| 17 | 16 | olci 737 |
. . . . . . . . . 10
|
| 18 | df-dc 840 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | mpbir 146 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | 12, 13, 20 | ifcldcd 3640 |
. . . . . . 7
|
| 22 | 21 | mptru 1404 |
. . . . . 6
|
| 23 | breq1 4086 |
. . . . . . . 8
| |
| 24 | 23 | ifbid 3624 |
. . . . . . 7
|
| 25 | eqid 2229 |
. . . . . . 7
| |
| 26 | 24, 25 | fvmptg 5712 |
. . . . . 6
|
| 27 | 11, 22, 26 | mp2an 426 |
. . . . 5
|
| 28 | 16 | iffalsei 3611 |
. . . . 5
|
| 29 | 27, 28 | eqtri 2250 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | 1ne0 9186 |
. . . . . 6
| |
| 32 | breq1 4086 |
. . . . . . . . . 10
| |
| 33 | 32 | ifbid 3624 |
. . . . . . . . 9
|
| 34 | rpre 9864 |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 277 |
. . . . . . . . 9
|
| 36 | 1zzd 9481 |
. . . . . . . . . 10
| |
| 37 | 0zd 9466 |
. . . . . . . . . 10
| |
| 38 | breq1 4086 |
. . . . . . . . . . . 12
| |
| 39 | 38 | dcbid 843 |
. . . . . . . . . . 11
|
| 40 | simpl 109 |
. . . . . . . . . . 11
| |
| 41 | 39, 40, 35 | rspcdva 2912 |
. . . . . . . . . 10
|
| 42 | 36, 37, 41 | ifcldcd 3640 |
. . . . . . . . 9
|
| 43 | 25, 33, 35, 42 | fvmptd3 5730 |
. . . . . . . 8
|
| 44 | rpap0 9874 |
. . . . . . . . . 10
| |
| 45 | 44 | iftrued 3609 |
. . . . . . . . 9
|
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 43, 46 | eqtrd 2262 |
. . . . . . 7
|
| 48 | 47 | neeq1d 2418 |
. . . . . 6
|
| 49 | 31, 48 | mpbiri 168 |
. . . . 5
|
| 50 | 49 | ralrimiva 2603 |
. . . 4
|
| 51 | fveq2 5629 |
. . . . . 6
| |
| 52 | 51 | neeq1d 2418 |
. . . . 5
|
| 53 | 52 | cbvralv 2765 |
. . . 4
|
| 54 | 50, 53 | sylib 122 |
. . 3
|
| 55 | 10, 30, 54 | 3jca 1201 |
. 2
|
| 56 | feq1 5456 |
. . 3
| |
| 57 | fveq1 5628 |
. . . 4
| |
| 58 | 57 | eqeq1d 2238 |
. . 3
|
| 59 | fveq1 5628 |
. . . . 5
| |
| 60 | 59 | neeq1d 2418 |
. . . 4
|
| 61 | 60 | ralbidv 2530 |
. . 3
|
| 62 | 56, 58, 61 | 3anbi123d 1346 |
. 2
|
| 63 | 3, 55, 62 | elabd 2948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-inn 9119 df-z 9455 df-rp 9858 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |