Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst Unicode version

Theorem dcapnconst 16459
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 16441 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 16458 and in fact this theorem can be proved using dceqnconst 16458 as shown at dcapnconstALT 16460. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8141 . . . 4  |-  RR  e.  _V
21mptex 5869 . . 3  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V )
4 1zzd 9481 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  1  e.  ZZ )
5 0zd 9466 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  0  e.  ZZ )
6 breq1 4086 . . . . . . 7  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
76dcbid 843 . . . . . 6  |-  ( x  =  y  ->  (DECID  x #  0 
<-> DECID  y #  0 ) )
87rspccva 2906 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  -> DECID 
y #  0 )
94, 5, 8ifcldcd 3640 . . . 4  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  if ( y #  0 ,  1 ,  0 )  e.  ZZ )
109fmpttd 5792 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ )
11 0re 8154 . . . . . 6  |-  0  e.  RR
12 1zzd 9481 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
13 0zd 9466 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
14 0cn 8146 . . . . . . . . . . . 12  |-  0  e.  CC
15 apirr 8760 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  -.  0 #  0 )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  -.  0 #  0
1716olci 737 . . . . . . . . . 10  |-  ( 0 #  0  \/  -.  0 #  0 )
18 df-dc 840 . . . . . . . . . 10  |-  (DECID  0 #  0  <-> 
( 0 #  0  \/ 
-.  0 #  0 ) )
1917, 18mpbir 146 . . . . . . . . 9  |- DECID  0 #  0
2019a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0 #  0 )
2112, 13, 20ifcldcd 3640 . . . . . . 7  |-  ( T. 
->  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )
2221mptru 1404 . . . . . 6  |-  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ
23 breq1 4086 . . . . . . . 8  |-  ( y  =  0  ->  (
y #  0  <->  0 #  0
) )
2423ifbid 3624 . . . . . . 7  |-  ( y  =  0  ->  if ( y #  0 , 
1 ,  0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
25 eqid 2229 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )
2624, 25fvmptg 5712 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )  -> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
2711, 22, 26mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  if ( 0 #  0 ,  1 ,  0 )
2816iffalsei 3611 . . . . 5  |-  if ( 0 #  0 ,  1 ,  0 )  =  0
2927, 28eqtri 2250 . . . 4  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0
3029a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0 )
31 1ne0 9186 . . . . . 6  |-  1  =/=  0
32 breq1 4086 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y #  0  <->  z #  0
) )
3332ifbid 3624 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y #  0 , 
1 ,  0 )  =  if ( z #  0 ,  1 ,  0 ) )
34 rpre 9864 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  z  e.  RR )
36 1zzd 9481 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
37 0zd 9466 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
38 breq1 4086 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
3938dcbid 843 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x #  0 
<-> DECID  z #  0 ) )
40 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x #  0 )
4139, 40, 35rspcdva 2912 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  -> DECID 
z #  0 )
4236, 37, 41ifcldcd 3640 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  e.  ZZ )
4325, 33, 35, 42fvmptd3 5730 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  if ( z #  0 ,  1 ,  0 ) )
44 rpap0 9874 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z #  0 )
4544iftrued 3609 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4645adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4743, 46eqtrd 2262 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  1 )
4847neeq1d 2418 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  1  =/=  0 ) )
4931, 48mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =/=  0 )
5049ralrimiva 2603 . . . 4  |-  ( A. x  e.  RR DECID  x #  0  ->  A. z  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0 )
51 fveq2 5629 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x ) )
5251neeq1d 2418 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
5352cbvralv 2765 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x )  =/=  0 )
5450, 53sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 )
5510, 30, 543jca 1201 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) )
56 feq1 5456 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f : RR --> ZZ 
<->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ ) )
57 fveq1 5628 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  0
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 ) )
5857eqeq1d 2238 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f ` 
0 )  =  0  <-> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0 ) )
59 fveq1 5628 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  x
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x ) )
6059neeq1d 2418 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f `  x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6160ralbidv 2530 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( A. x  e.  RR+  ( f `  x
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6256, 58, 613anbi123d 1346 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 )  <->  ( (
y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) ) )
633, 55, 62elabd 2948 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395   T. wtru 1396   E.wex 1538    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318   CCcc 8005   RRcr 8006   0cc0 8007   1c1 8008   # cap 8736   ZZcz 9454   RR+crp 9857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-inn 9119  df-z 9455  df-rp 9858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator