Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst Unicode version

Theorem dcapnconst 16074
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 16056 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 16073 and in fact this theorem can be proved using dceqnconst 16073 as shown at dcapnconstALT 16075. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8066 . . . 4  |-  RR  e.  _V
21mptex 5817 . . 3  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V )
4 1zzd 9406 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  1  e.  ZZ )
5 0zd 9391 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  0  e.  ZZ )
6 breq1 4050 . . . . . . 7  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
76dcbid 840 . . . . . 6  |-  ( x  =  y  ->  (DECID  x #  0 
<-> DECID  y #  0 ) )
87rspccva 2877 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  -> DECID 
y #  0 )
94, 5, 8ifcldcd 3609 . . . 4  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  if ( y #  0 ,  1 ,  0 )  e.  ZZ )
109fmpttd 5742 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ )
11 0re 8079 . . . . . 6  |-  0  e.  RR
12 1zzd 9406 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
13 0zd 9391 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
14 0cn 8071 . . . . . . . . . . . 12  |-  0  e.  CC
15 apirr 8685 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  -.  0 #  0 )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  -.  0 #  0
1716olci 734 . . . . . . . . . 10  |-  ( 0 #  0  \/  -.  0 #  0 )
18 df-dc 837 . . . . . . . . . 10  |-  (DECID  0 #  0  <-> 
( 0 #  0  \/ 
-.  0 #  0 ) )
1917, 18mpbir 146 . . . . . . . . 9  |- DECID  0 #  0
2019a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0 #  0 )
2112, 13, 20ifcldcd 3609 . . . . . . 7  |-  ( T. 
->  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )
2221mptru 1382 . . . . . 6  |-  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ
23 breq1 4050 . . . . . . . 8  |-  ( y  =  0  ->  (
y #  0  <->  0 #  0
) )
2423ifbid 3593 . . . . . . 7  |-  ( y  =  0  ->  if ( y #  0 , 
1 ,  0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
25 eqid 2206 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )
2624, 25fvmptg 5662 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )  -> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
2711, 22, 26mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  if ( 0 #  0 ,  1 ,  0 )
2816iffalsei 3581 . . . . 5  |-  if ( 0 #  0 ,  1 ,  0 )  =  0
2927, 28eqtri 2227 . . . 4  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0
3029a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0 )
31 1ne0 9111 . . . . . 6  |-  1  =/=  0
32 breq1 4050 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y #  0  <->  z #  0
) )
3332ifbid 3593 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y #  0 , 
1 ,  0 )  =  if ( z #  0 ,  1 ,  0 ) )
34 rpre 9789 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  z  e.  RR )
36 1zzd 9406 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
37 0zd 9391 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
38 breq1 4050 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
3938dcbid 840 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x #  0 
<-> DECID  z #  0 ) )
40 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x #  0 )
4139, 40, 35rspcdva 2883 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  -> DECID 
z #  0 )
4236, 37, 41ifcldcd 3609 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  e.  ZZ )
4325, 33, 35, 42fvmptd3 5680 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  if ( z #  0 ,  1 ,  0 ) )
44 rpap0 9799 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z #  0 )
4544iftrued 3579 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4645adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4743, 46eqtrd 2239 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  1 )
4847neeq1d 2395 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  1  =/=  0 ) )
4931, 48mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =/=  0 )
5049ralrimiva 2580 . . . 4  |-  ( A. x  e.  RR DECID  x #  0  ->  A. z  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0 )
51 fveq2 5583 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x ) )
5251neeq1d 2395 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
5352cbvralv 2739 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x )  =/=  0 )
5450, 53sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 )
5510, 30, 543jca 1180 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) )
56 feq1 5414 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f : RR --> ZZ 
<->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ ) )
57 fveq1 5582 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  0
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 ) )
5857eqeq1d 2215 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f ` 
0 )  =  0  <-> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0 ) )
59 fveq1 5582 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  x
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x ) )
6059neeq1d 2395 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f `  x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6160ralbidv 2507 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( A. x  e.  RR+  ( f `  x
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6256, 58, 613anbi123d 1325 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 )  <->  ( (
y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) ) )
633, 55, 62elabd 2919 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373   T. wtru 1374   E.wex 1516    e. wcel 2177    =/= wne 2377   A.wral 2485   _Vcvv 2773   ifcif 3572   class class class wbr 4047    |-> cmpt 4109   -->wf 5272   ` cfv 5276   CCcc 7930   RRcr 7931   0cc0 7932   1c1 7933   # cap 8661   ZZcz 9379   RR+crp 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-inn 9044  df-z 9380  df-rp 9783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator