Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconst | Unicode version |
Description: Decidability of real
number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 14075 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 14091 and in fact this theorem can be proved using dceqnconst 14091 as shown at dcapnconstALT 14093. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
Ref | Expression |
---|---|
dcapnconst | DECID # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 7908 | . . . 4 | |
2 | 1 | mptex 5722 | . . 3 # |
3 | 2 | a1i 9 | . 2 DECID # # |
4 | 1zzd 9239 | . . . . 5 DECID # | |
5 | 0zd 9224 | . . . . 5 DECID # | |
6 | breq1 3992 | . . . . . . 7 # # | |
7 | 6 | dcbid 833 | . . . . . 6 DECID # DECID # |
8 | 7 | rspccva 2833 | . . . . 5 DECID # DECID # |
9 | 4, 5, 8 | ifcldcd 3561 | . . . 4 DECID # # |
10 | 9 | fmpttd 5651 | . . 3 DECID # # |
11 | 0re 7920 | . . . . . 6 | |
12 | 1zzd 9239 | . . . . . . . 8 | |
13 | 0zd 9224 | . . . . . . . 8 | |
14 | 0cn 7912 | . . . . . . . . . . . 12 | |
15 | apirr 8524 | . . . . . . . . . . . 12 # | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 # |
17 | 16 | olci 727 | . . . . . . . . . 10 # # |
18 | df-dc 830 | . . . . . . . . . 10 DECID # # # | |
19 | 17, 18 | mpbir 145 | . . . . . . . . 9 DECID # |
20 | 19 | a1i 9 | . . . . . . . 8 DECID # |
21 | 12, 13, 20 | ifcldcd 3561 | . . . . . . 7 # |
22 | 21 | mptru 1357 | . . . . . 6 # |
23 | breq1 3992 | . . . . . . . 8 # # | |
24 | 23 | ifbid 3547 | . . . . . . 7 # # |
25 | eqid 2170 | . . . . . . 7 # # | |
26 | 24, 25 | fvmptg 5572 | . . . . . 6 # # # |
27 | 11, 22, 26 | mp2an 424 | . . . . 5 # # |
28 | 16 | iffalsei 3535 | . . . . 5 # |
29 | 27, 28 | eqtri 2191 | . . . 4 # |
30 | 29 | a1i 9 | . . 3 DECID # # |
31 | 1ne0 8946 | . . . . . 6 | |
32 | breq1 3992 | . . . . . . . . . 10 # # | |
33 | 32 | ifbid 3547 | . . . . . . . . 9 # # |
34 | rpre 9617 | . . . . . . . . . 10 | |
35 | 34 | adantl 275 | . . . . . . . . 9 DECID # |
36 | 1zzd 9239 | . . . . . . . . . 10 DECID # | |
37 | 0zd 9224 | . . . . . . . . . 10 DECID # | |
38 | breq1 3992 | . . . . . . . . . . . 12 # # | |
39 | 38 | dcbid 833 | . . . . . . . . . . 11 DECID # DECID # |
40 | simpl 108 | . . . . . . . . . . 11 DECID # DECID # | |
41 | 39, 40, 35 | rspcdva 2839 | . . . . . . . . . 10 DECID # DECID # |
42 | 36, 37, 41 | ifcldcd 3561 | . . . . . . . . 9 DECID # # |
43 | 25, 33, 35, 42 | fvmptd3 5589 | . . . . . . . 8 DECID # # # |
44 | rpap0 9627 | . . . . . . . . . 10 # | |
45 | 44 | iftrued 3533 | . . . . . . . . 9 # |
46 | 45 | adantl 275 | . . . . . . . 8 DECID # # |
47 | 43, 46 | eqtrd 2203 | . . . . . . 7 DECID # # |
48 | 47 | neeq1d 2358 | . . . . . 6 DECID # # |
49 | 31, 48 | mpbiri 167 | . . . . 5 DECID # # |
50 | 49 | ralrimiva 2543 | . . . 4 DECID # # |
51 | fveq2 5496 | . . . . . 6 # # | |
52 | 51 | neeq1d 2358 | . . . . 5 # # |
53 | 52 | cbvralv 2696 | . . . 4 # # |
54 | 50, 53 | sylib 121 | . . 3 DECID # # |
55 | 10, 30, 54 | 3jca 1172 | . 2 DECID # # # # |
56 | feq1 5330 | . . 3 # # | |
57 | fveq1 5495 | . . . 4 # # | |
58 | 57 | eqeq1d 2179 | . . 3 # # |
59 | fveq1 5495 | . . . . 5 # # | |
60 | 59 | neeq1d 2358 | . . . 4 # # |
61 | 60 | ralbidv 2470 | . . 3 # # |
62 | 56, 58, 61 | 3anbi123d 1307 | . 2 # # # # |
63 | 3, 55, 62 | elabd 2875 | 1 DECID # |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 w3a 973 wceq 1348 wtru 1349 wex 1485 wcel 2141 wne 2340 wral 2448 cvv 2730 cif 3526 class class class wbr 3989 cmpt 4050 wf 5194 cfv 5198 cc 7772 cr 7773 cc0 7774 c1 7775 # cap 8500 cz 9212 crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-inn 8879 df-z 9213 df-rp 9611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |