Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconst | Unicode version |
Description: Decidability of real
number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 13563 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 13579 and in fact this theorem can be proved using dceqnconst 13579 as shown at dcapnconstALT 13581. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
Ref | Expression |
---|---|
dcapnconst | DECID # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reex 7845 | . . . 4 | |
2 | 1 | mptex 5686 | . . 3 # |
3 | 2 | a1i 9 | . 2 DECID # # |
4 | 1zzd 9173 | . . . . 5 DECID # | |
5 | 0zd 9158 | . . . . 5 DECID # | |
6 | breq1 3964 | . . . . . . 7 # # | |
7 | 6 | dcbid 824 | . . . . . 6 DECID # DECID # |
8 | 7 | rspccva 2812 | . . . . 5 DECID # DECID # |
9 | 4, 5, 8 | ifcldcd 3536 | . . . 4 DECID # # |
10 | 9 | fmpttd 5615 | . . 3 DECID # # |
11 | 0re 7857 | . . . . . 6 | |
12 | 1zzd 9173 | . . . . . . . 8 | |
13 | 0zd 9158 | . . . . . . . 8 | |
14 | 0cn 7849 | . . . . . . . . . . . 12 | |
15 | apirr 8459 | . . . . . . . . . . . 12 # | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . . . 11 # |
17 | 16 | olci 722 | . . . . . . . . . 10 # # |
18 | df-dc 821 | . . . . . . . . . 10 DECID # # # | |
19 | 17, 18 | mpbir 145 | . . . . . . . . 9 DECID # |
20 | 19 | a1i 9 | . . . . . . . 8 DECID # |
21 | 12, 13, 20 | ifcldcd 3536 | . . . . . . 7 # |
22 | 21 | mptru 1341 | . . . . . 6 # |
23 | breq1 3964 | . . . . . . . 8 # # | |
24 | 23 | ifbid 3522 | . . . . . . 7 # # |
25 | eqid 2154 | . . . . . . 7 # # | |
26 | 24, 25 | fvmptg 5537 | . . . . . 6 # # # |
27 | 11, 22, 26 | mp2an 423 | . . . . 5 # # |
28 | 16 | iffalsei 3510 | . . . . 5 # |
29 | 27, 28 | eqtri 2175 | . . . 4 # |
30 | 29 | a1i 9 | . . 3 DECID # # |
31 | 1ne0 8880 | . . . . . 6 | |
32 | breq1 3964 | . . . . . . . . . 10 # # | |
33 | 32 | ifbid 3522 | . . . . . . . . 9 # # |
34 | rpre 9545 | . . . . . . . . . 10 | |
35 | 34 | adantl 275 | . . . . . . . . 9 DECID # |
36 | 1zzd 9173 | . . . . . . . . . 10 DECID # | |
37 | 0zd 9158 | . . . . . . . . . 10 DECID # | |
38 | breq1 3964 | . . . . . . . . . . . 12 # # | |
39 | 38 | dcbid 824 | . . . . . . . . . . 11 DECID # DECID # |
40 | simpl 108 | . . . . . . . . . . 11 DECID # DECID # | |
41 | 39, 40, 35 | rspcdva 2818 | . . . . . . . . . 10 DECID # DECID # |
42 | 36, 37, 41 | ifcldcd 3536 | . . . . . . . . 9 DECID # # |
43 | 25, 33, 35, 42 | fvmptd3 5554 | . . . . . . . 8 DECID # # # |
44 | rpap0 9555 | . . . . . . . . . 10 # | |
45 | 44 | iftrued 3508 | . . . . . . . . 9 # |
46 | 45 | adantl 275 | . . . . . . . 8 DECID # # |
47 | 43, 46 | eqtrd 2187 | . . . . . . 7 DECID # # |
48 | 47 | neeq1d 2342 | . . . . . 6 DECID # # |
49 | 31, 48 | mpbiri 167 | . . . . 5 DECID # # |
50 | 49 | ralrimiva 2527 | . . . 4 DECID # # |
51 | fveq2 5461 | . . . . . 6 # # | |
52 | 51 | neeq1d 2342 | . . . . 5 # # |
53 | 52 | cbvralv 2677 | . . . 4 # # |
54 | 50, 53 | sylib 121 | . . 3 DECID # # |
55 | 10, 30, 54 | 3jca 1162 | . 2 DECID # # # # |
56 | feq1 5295 | . . 3 # # | |
57 | fveq1 5460 | . . . 4 # # | |
58 | 57 | eqeq1d 2163 | . . 3 # # |
59 | fveq1 5460 | . . . . 5 # # | |
60 | 59 | neeq1d 2342 | . . . 4 # # |
61 | 60 | ralbidv 2454 | . . 3 # # |
62 | 56, 58, 61 | 3anbi123d 1291 | . 2 # # # # |
63 | 3, 55, 62 | elabd 2853 | 1 DECID # |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 w3a 963 wceq 1332 wtru 1333 wex 1469 wcel 2125 wne 2324 wral 2432 cvv 2709 cif 3501 class class class wbr 3961 cmpt 4021 wf 5159 cfv 5163 cc 7709 cr 7710 cc0 7711 c1 7712 # cap 8435 cz 9146 crp 9538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-inn 8813 df-z 9147 df-rp 9539 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |