Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  dcapnconst Unicode version

Theorem dcapnconst 16340
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. Variation of Exercise 11.6(i) of [HoTT], p. (varies). See trilpo 16322 for more discussion of decidability of real number apartness.

This is a weaker form of dceqnconst 16339 and in fact this theorem can be proved using dceqnconst 16339 as shown at dcapnconstALT 16341. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.)

Assertion
Ref Expression
dcapnconst  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Distinct variable group:    x, f

Proof of Theorem dcapnconst
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8101 . . . 4  |-  RR  e.  _V
21mptex 5838 . . 3  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V
32a1i 9 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  e.  _V )
4 1zzd 9441 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  1  e.  ZZ )
5 0zd 9426 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  0  e.  ZZ )
6 breq1 4065 . . . . . . 7  |-  ( x  =  y  ->  (
x #  0  <->  y #  0
) )
76dcbid 842 . . . . . 6  |-  ( x  =  y  ->  (DECID  x #  0 
<-> DECID  y #  0 ) )
87rspccva 2886 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  -> DECID 
y #  0 )
94, 5, 8ifcldcd 3620 . . . 4  |-  ( ( A. x  e.  RR DECID  x #  0  /\  y  e.  RR )  ->  if ( y #  0 ,  1 ,  0 )  e.  ZZ )
109fmpttd 5763 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ )
11 0re 8114 . . . . . 6  |-  0  e.  RR
12 1zzd 9441 . . . . . . . 8  |-  ( T. 
->  1  e.  ZZ )
13 0zd 9426 . . . . . . . 8  |-  ( T. 
->  0  e.  ZZ )
14 0cn 8106 . . . . . . . . . . . 12  |-  0  e.  CC
15 apirr 8720 . . . . . . . . . . . 12  |-  ( 0  e.  CC  ->  -.  0 #  0 )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  -.  0 #  0
1716olci 736 . . . . . . . . . 10  |-  ( 0 #  0  \/  -.  0 #  0 )
18 df-dc 839 . . . . . . . . . 10  |-  (DECID  0 #  0  <-> 
( 0 #  0  \/ 
-.  0 #  0 ) )
1917, 18mpbir 146 . . . . . . . . 9  |- DECID  0 #  0
2019a1i 9 . . . . . . . 8  |-  ( T. 
-> DECID  0 #  0 )
2112, 13, 20ifcldcd 3620 . . . . . . 7  |-  ( T. 
->  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )
2221mptru 1384 . . . . . 6  |-  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ
23 breq1 4065 . . . . . . . 8  |-  ( y  =  0  ->  (
y #  0  <->  0 #  0
) )
2423ifbid 3604 . . . . . . 7  |-  ( y  =  0  ->  if ( y #  0 , 
1 ,  0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
25 eqid 2209 . . . . . . 7  |-  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )
2624, 25fvmptg 5683 . . . . . 6  |-  ( ( 0  e.  RR  /\  if ( 0 #  0 ,  1 ,  0 )  e.  ZZ )  -> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  if ( 0 #  0 ,  1 ,  0 ) )
2711, 22, 26mp2an 426 . . . . 5  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  if ( 0 #  0 ,  1 ,  0 )
2816iffalsei 3591 . . . . 5  |-  if ( 0 #  0 ,  1 ,  0 )  =  0
2927, 28eqtri 2230 . . . 4  |-  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0
3029a1i 9 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 )  =  0 )
31 1ne0 9146 . . . . . 6  |-  1  =/=  0
32 breq1 4065 . . . . . . . . . 10  |-  ( y  =  z  ->  (
y #  0  <->  z #  0
) )
3332ifbid 3604 . . . . . . . . 9  |-  ( y  =  z  ->  if ( y #  0 , 
1 ,  0 )  =  if ( z #  0 ,  1 ,  0 ) )
34 rpre 9824 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z  e.  RR )
3534adantl 277 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  z  e.  RR )
36 1zzd 9441 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  1  e.  ZZ )
37 0zd 9426 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  0  e.  ZZ )
38 breq1 4065 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
x #  0  <->  z #  0
) )
3938dcbid 842 . . . . . . . . . . 11  |-  ( x  =  z  ->  (DECID  x #  0 
<-> DECID  z #  0 ) )
40 simpl 109 . . . . . . . . . . 11  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  A. x  e.  RR DECID  x #  0 )
4139, 40, 35rspcdva 2892 . . . . . . . . . 10  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  -> DECID 
z #  0 )
4236, 37, 41ifcldcd 3620 . . . . . . . . 9  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  e.  ZZ )
4325, 33, 35, 42fvmptd3 5701 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  if ( z #  0 ,  1 ,  0 ) )
44 rpap0 9834 . . . . . . . . . 10  |-  ( z  e.  RR+  ->  z #  0 )
4544iftrued 3589 . . . . . . . . 9  |-  ( z  e.  RR+  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4645adantl 277 . . . . . . . 8  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  if ( z #  0 ,  1 ,  0 )  =  1 )
4743, 46eqtrd 2242 . . . . . . 7  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =  1 )
4847neeq1d 2398 . . . . . 6  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  1  =/=  0 ) )
4931, 48mpbiri 168 . . . . 5  |-  ( ( A. x  e.  RR DECID  x #  0  /\  z  e.  RR+ )  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 z )  =/=  0 )
5049ralrimiva 2583 . . . 4  |-  ( A. x  e.  RR DECID  x #  0  ->  A. z  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0 )
51 fveq2 5603 . . . . . 6  |-  ( z  =  x  ->  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x ) )
5251neeq1d 2398 . . . . 5  |-  ( z  =  x  ->  (
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
5352cbvralv 2745 . . . 4  |-  ( A. z  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  z )  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `
 x )  =/=  0 )
5450, 53sylib 122 . . 3  |-  ( A. x  e.  RR DECID  x #  0  ->  A. x  e.  RR+  (
( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 )
5510, 30, 543jca 1182 . 2  |-  ( A. x  e.  RR DECID  x #  0  ->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) )
56 feq1 5432 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f : RR --> ZZ 
<->  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ ) )
57 fveq1 5602 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  0
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  0 ) )
5857eqeq1d 2218 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f ` 
0 )  =  0  <-> 
( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0 ) )
59 fveq1 5602 . . . . 5  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( f `  x
)  =  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x ) )
6059neeq1d 2398 . . . 4  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f `  x )  =/=  0  <->  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6160ralbidv 2510 . . 3  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( A. x  e.  RR+  ( f `  x
)  =/=  0  <->  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0 ) )
6256, 58, 613anbi123d 1327 . 2  |-  ( f  =  ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) )  -> 
( ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 )  <->  ( (
y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) : RR --> ZZ  /\  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) ` 
0 )  =  0  /\  A. x  e.  RR+  ( ( y  e.  RR  |->  if ( y #  0 ,  1 ,  0 ) ) `  x )  =/=  0
) ) )
633, 55, 62elabd 2928 1  |-  ( A. x  e.  RR DECID  x #  0  ->  E. f ( f : RR --> ZZ  /\  (
f `  0 )  =  0  /\  A. x  e.  RR+  ( f `
 x )  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 712  DECID wdc 838    /\ w3a 983    = wceq 1375   T. wtru 1376   E.wex 1518    e. wcel 2180    =/= wne 2380   A.wral 2488   _Vcvv 2779   ifcif 3582   class class class wbr 4062    |-> cmpt 4124   -->wf 5290   ` cfv 5294   CCcc 7965   RRcr 7966   0cc0 7967   1c1 7968   # cap 8696   ZZcz 9414   RR+crp 9817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-inn 9079  df-z 9415  df-rp 9818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator