| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconst | Unicode version | ||
| Description: Decidability of real
number apartness implies the existence of a certain
non-constant function from real numbers to integers. Variation of
Exercise 11.6(i) of [HoTT], p. (varies).
See trilpo 16322 for more
discussion of decidability of real number apartness.
This is a weaker form of dceqnconst 16339 and in fact this theorem can be proved using dceqnconst 16339 as shown at dcapnconstALT 16341. (Contributed by BJ and Jim Kingdon, 24-Jun-2024.) |
| Ref | Expression |
|---|---|
| dcapnconst |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex 8101 |
. . . 4
| |
| 2 | 1 | mptex 5838 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1zzd 9441 |
. . . . 5
| |
| 5 | 0zd 9426 |
. . . . 5
| |
| 6 | breq1 4065 |
. . . . . . 7
| |
| 7 | 6 | dcbid 842 |
. . . . . 6
|
| 8 | 7 | rspccva 2886 |
. . . . 5
|
| 9 | 4, 5, 8 | ifcldcd 3620 |
. . . 4
|
| 10 | 9 | fmpttd 5763 |
. . 3
|
| 11 | 0re 8114 |
. . . . . 6
| |
| 12 | 1zzd 9441 |
. . . . . . . 8
| |
| 13 | 0zd 9426 |
. . . . . . . 8
| |
| 14 | 0cn 8106 |
. . . . . . . . . . . 12
| |
| 15 | apirr 8720 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . 11
|
| 17 | 16 | olci 736 |
. . . . . . . . . 10
|
| 18 | df-dc 839 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | mpbir 146 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | 12, 13, 20 | ifcldcd 3620 |
. . . . . . 7
|
| 22 | 21 | mptru 1384 |
. . . . . 6
|
| 23 | breq1 4065 |
. . . . . . . 8
| |
| 24 | 23 | ifbid 3604 |
. . . . . . 7
|
| 25 | eqid 2209 |
. . . . . . 7
| |
| 26 | 24, 25 | fvmptg 5683 |
. . . . . 6
|
| 27 | 11, 22, 26 | mp2an 426 |
. . . . 5
|
| 28 | 16 | iffalsei 3591 |
. . . . 5
|
| 29 | 27, 28 | eqtri 2230 |
. . . 4
|
| 30 | 29 | a1i 9 |
. . 3
|
| 31 | 1ne0 9146 |
. . . . . 6
| |
| 32 | breq1 4065 |
. . . . . . . . . 10
| |
| 33 | 32 | ifbid 3604 |
. . . . . . . . 9
|
| 34 | rpre 9824 |
. . . . . . . . . 10
| |
| 35 | 34 | adantl 277 |
. . . . . . . . 9
|
| 36 | 1zzd 9441 |
. . . . . . . . . 10
| |
| 37 | 0zd 9426 |
. . . . . . . . . 10
| |
| 38 | breq1 4065 |
. . . . . . . . . . . 12
| |
| 39 | 38 | dcbid 842 |
. . . . . . . . . . 11
|
| 40 | simpl 109 |
. . . . . . . . . . 11
| |
| 41 | 39, 40, 35 | rspcdva 2892 |
. . . . . . . . . 10
|
| 42 | 36, 37, 41 | ifcldcd 3620 |
. . . . . . . . 9
|
| 43 | 25, 33, 35, 42 | fvmptd3 5701 |
. . . . . . . 8
|
| 44 | rpap0 9834 |
. . . . . . . . . 10
| |
| 45 | 44 | iftrued 3589 |
. . . . . . . . 9
|
| 46 | 45 | adantl 277 |
. . . . . . . 8
|
| 47 | 43, 46 | eqtrd 2242 |
. . . . . . 7
|
| 48 | 47 | neeq1d 2398 |
. . . . . 6
|
| 49 | 31, 48 | mpbiri 168 |
. . . . 5
|
| 50 | 49 | ralrimiva 2583 |
. . . 4
|
| 51 | fveq2 5603 |
. . . . . 6
| |
| 52 | 51 | neeq1d 2398 |
. . . . 5
|
| 53 | 52 | cbvralv 2745 |
. . . 4
|
| 54 | 50, 53 | sylib 122 |
. . 3
|
| 55 | 10, 30, 54 | 3jca 1182 |
. 2
|
| 56 | feq1 5432 |
. . 3
| |
| 57 | fveq1 5602 |
. . . 4
| |
| 58 | 57 | eqeq1d 2218 |
. . 3
|
| 59 | fveq1 5602 |
. . . . 5
| |
| 60 | 59 | neeq1d 2398 |
. . . 4
|
| 61 | 60 | ralbidv 2510 |
. . 3
|
| 62 | 56, 58, 61 | 3anbi123d 1327 |
. 2
|
| 63 | 3, 55, 62 | elabd 2928 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-inn 9079 df-z 9415 df-rp 9818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |