ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sum0 Unicode version

Theorem sum0 11570
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sum0  |-  sum_ k  e.  (/)  A  =  0

Proof of Theorem sum0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nnuz 9654 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9370 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 0ss 3490 . . . . 5  |-  (/)  C_  NN
43a1i 9 . . . 4  |-  ( T. 
->  (/)  C_  NN )
5 simpr 110 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
65, 1eleqtrdi 2289 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
7 c0ex 8037 . . . . . . 7  |-  0  e.  _V
87fvconst2 5781 . . . . . 6  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( (
( ZZ>= `  1 )  X.  { 0 } ) `
 k )  =  0 )
96, 8syl 14 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( ZZ>= `  1
)  X.  { 0 } ) `  k
)  =  0 )
10 noel 3455 . . . . . 6  |-  -.  k  e.  (/)
1110iffalsei 3571 . . . . 5  |-  if ( k  e.  (/) ,  A ,  0 )  =  0
129, 11eqtr4di 2247 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( ZZ>= `  1
)  X.  { 0 } ) `  k
)  =  if ( k  e.  (/) ,  A ,  0 ) )
13 noel 3455 . . . . . . . 8  |-  -.  j  e.  (/)
1413olci 733 . . . . . . 7  |-  ( j  e.  (/)  \/  -.  j  e.  (/) )
15 df-dc 836 . . . . . . 7  |-  (DECID  j  e.  (/) 
<->  ( j  e.  (/)  \/ 
-.  j  e.  (/) ) )
1614, 15mpbir 146 . . . . . 6  |- DECID  j  e.  (/)
1716rgenw 2552 . . . . 5  |-  A. j  e.  NN DECID  j  e.  (/)
1817a1i 9 . . . 4  |-  ( T. 
->  A. j  e.  NN DECID  j  e.  (/) )
1910pm2.21i 647 . . . . 5  |-  ( k  e.  (/)  ->  A  e.  CC )
2019adantl 277 . . . 4  |-  ( ( T.  /\  k  e.  (/) )  ->  A  e.  CC )
211, 2, 4, 12, 18, 20zsumdc 11566 . . 3  |-  ( T. 
->  sum_ k  e.  (/)  A  =  (  ~~>  `  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) ) ) )
2221mptru 1373 . 2  |-  sum_ k  e.  (/)  A  =  (  ~~>  `
 seq 1 (  +  ,  ( ( ZZ>= ` 
1 )  X.  {
0 } ) ) )
23 fclim 11476 . . . 4  |-  ~~>  : dom  ~~>  --> CC
24 ffun 5413 . . . 4  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2523, 24ax-mp 5 . . 3  |-  Fun  ~~>
26 1z 9369 . . . 4  |-  1  e.  ZZ
27 serclim0 11487 . . . 4  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  ~~>  0 )
2826, 27ax-mp 5 . . 3  |-  seq 1
(  +  ,  ( ( ZZ>= `  1 )  X.  { 0 } ) )  ~~>  0
29 funbrfv 5602 . . 3  |-  ( Fun  ~~>  ->  (  seq 1 (  +  ,  ( (
ZZ>= `  1 )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq 1 (  +  ,  ( ( ZZ>= ` 
1 )  X.  {
0 } ) ) )  =  0 ) )
3025, 28, 29mp2 16 . 2  |-  (  ~~>  `  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) ) )  =  0
3122, 30eqtri 2217 1  |-  sum_ k  e.  (/)  A  =  0
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475    C_ wss 3157   (/)c0 3451   ifcif 3562   {csn 3623   class class class wbr 4034    X. cxp 4662   dom cdm 4664   Fun wfun 5253   -->wf 5255   ` cfv 5259   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899   NNcn 9007   ZZcz 9343   ZZ>=cuz 9618    seqcseq 10556    ~~> cli 11460   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  isumz  11571  fsumf1o  11572  fsumcllem  11581  fsumadd  11588  fsum2d  11617  fisumrev2  11628  fsummulc2  11630  fsumconst  11636  modfsummod  11640  fsumabs  11647  telfsumo  11648  fsumparts  11652  fsumrelem  11653  fsumiun  11659  isumsplit  11673  arisum  11680  arisum2  11681  cvgratnnlemseq  11708  bitsinv1  12144  gsumfzfsumlem0  14218  fsumcncntop  14887  dvmptfsum  15045
  Copyright terms: Public domain W3C validator