| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sum0 | Unicode version | ||
| Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
| Ref | Expression |
|---|---|
| sum0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 9654 |
. . . 4
| |
| 2 | 1zzd 9370 |
. . . 4
| |
| 3 | 0ss 3490 |
. . . . 5
| |
| 4 | 3 | a1i 9 |
. . . 4
|
| 5 | simpr 110 |
. . . . . . 7
| |
| 6 | 5, 1 | eleqtrdi 2289 |
. . . . . 6
|
| 7 | c0ex 8037 |
. . . . . . 7
| |
| 8 | 7 | fvconst2 5781 |
. . . . . 6
|
| 9 | 6, 8 | syl 14 |
. . . . 5
|
| 10 | noel 3455 |
. . . . . 6
| |
| 11 | 10 | iffalsei 3571 |
. . . . 5
|
| 12 | 9, 11 | eqtr4di 2247 |
. . . 4
|
| 13 | noel 3455 |
. . . . . . . 8
| |
| 14 | 13 | olci 733 |
. . . . . . 7
|
| 15 | df-dc 836 |
. . . . . . 7
| |
| 16 | 14, 15 | mpbir 146 |
. . . . . 6
|
| 17 | 16 | rgenw 2552 |
. . . . 5
|
| 18 | 17 | a1i 9 |
. . . 4
|
| 19 | 10 | pm2.21i 647 |
. . . . 5
|
| 20 | 19 | adantl 277 |
. . . 4
|
| 21 | 1, 2, 4, 12, 18, 20 | zsumdc 11566 |
. . 3
|
| 22 | 21 | mptru 1373 |
. 2
|
| 23 | fclim 11476 |
. . . 4
| |
| 24 | ffun 5413 |
. . . 4
| |
| 25 | 23, 24 | ax-mp 5 |
. . 3
|
| 26 | 1z 9369 |
. . . 4
| |
| 27 | serclim0 11487 |
. . . 4
| |
| 28 | 26, 27 | ax-mp 5 |
. . 3
|
| 29 | funbrfv 5602 |
. . 3
| |
| 30 | 25, 28, 29 | mp2 16 |
. 2
|
| 31 | 22, 30 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: isumz 11571 fsumf1o 11572 fsumcllem 11581 fsumadd 11588 fsum2d 11617 fisumrev2 11628 fsummulc2 11630 fsumconst 11636 modfsummod 11640 fsumabs 11647 telfsumo 11648 fsumparts 11652 fsumrelem 11653 fsumiun 11659 isumsplit 11673 arisum 11680 arisum2 11681 cvgratnnlemseq 11708 bitsinv1 12144 gsumfzfsumlem0 14218 fsumcncntop 14887 dvmptfsum 15045 |
| Copyright terms: Public domain | W3C validator |