ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sum0 Unicode version

Theorem sum0 11396
Description: Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sum0  |-  sum_ k  e.  (/)  A  =  0

Proof of Theorem sum0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nnuz 9563 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 9280 . . . 4  |-  ( T. 
->  1  e.  ZZ )
3 0ss 3462 . . . . 5  |-  (/)  C_  NN
43a1i 9 . . . 4  |-  ( T. 
->  (/)  C_  NN )
5 simpr 110 . . . . . . 7  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  NN )
65, 1eleqtrdi 2270 . . . . . 6  |-  ( ( T.  /\  k  e.  NN )  ->  k  e.  ( ZZ>= `  1 )
)
7 c0ex 7951 . . . . . . 7  |-  0  e.  _V
87fvconst2 5733 . . . . . 6  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( (
( ZZ>= `  1 )  X.  { 0 } ) `
 k )  =  0 )
96, 8syl 14 . . . . 5  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( ZZ>= `  1
)  X.  { 0 } ) `  k
)  =  0 )
10 noel 3427 . . . . . 6  |-  -.  k  e.  (/)
1110iffalsei 3544 . . . . 5  |-  if ( k  e.  (/) ,  A ,  0 )  =  0
129, 11eqtr4di 2228 . . . 4  |-  ( ( T.  /\  k  e.  NN )  ->  (
( ( ZZ>= `  1
)  X.  { 0 } ) `  k
)  =  if ( k  e.  (/) ,  A ,  0 ) )
13 noel 3427 . . . . . . . 8  |-  -.  j  e.  (/)
1413olci 732 . . . . . . 7  |-  ( j  e.  (/)  \/  -.  j  e.  (/) )
15 df-dc 835 . . . . . . 7  |-  (DECID  j  e.  (/) 
<->  ( j  e.  (/)  \/ 
-.  j  e.  (/) ) )
1614, 15mpbir 146 . . . . . 6  |- DECID  j  e.  (/)
1716rgenw 2532 . . . . 5  |-  A. j  e.  NN DECID  j  e.  (/)
1817a1i 9 . . . 4  |-  ( T. 
->  A. j  e.  NN DECID  j  e.  (/) )
1910pm2.21i 646 . . . . 5  |-  ( k  e.  (/)  ->  A  e.  CC )
2019adantl 277 . . . 4  |-  ( ( T.  /\  k  e.  (/) )  ->  A  e.  CC )
211, 2, 4, 12, 18, 20zsumdc 11392 . . 3  |-  ( T. 
->  sum_ k  e.  (/)  A  =  (  ~~>  `  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) ) ) )
2221mptru 1362 . 2  |-  sum_ k  e.  (/)  A  =  (  ~~>  `
 seq 1 (  +  ,  ( ( ZZ>= ` 
1 )  X.  {
0 } ) ) )
23 fclim 11302 . . . 4  |-  ~~>  : dom  ~~>  --> CC
24 ffun 5369 . . . 4  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
2523, 24ax-mp 5 . . 3  |-  Fun  ~~>
26 1z 9279 . . . 4  |-  1  e.  ZZ
27 serclim0 11313 . . . 4  |-  ( 1  e.  ZZ  ->  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) )  ~~>  0 )
2826, 27ax-mp 5 . . 3  |-  seq 1
(  +  ,  ( ( ZZ>= `  1 )  X.  { 0 } ) )  ~~>  0
29 funbrfv 5555 . . 3  |-  ( Fun  ~~>  ->  (  seq 1 (  +  ,  ( (
ZZ>= `  1 )  X. 
{ 0 } ) )  ~~>  0  ->  (  ~~>  ` 
seq 1 (  +  ,  ( ( ZZ>= ` 
1 )  X.  {
0 } ) ) )  =  0 ) )
3025, 28, 29mp2 16 . 2  |-  (  ~~>  `  seq 1 (  +  , 
( ( ZZ>= `  1
)  X.  { 0 } ) ) )  =  0
3122, 30eqtri 2198 1  |-  sum_ k  e.  (/)  A  =  0
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353   T. wtru 1354    e. wcel 2148   A.wral 2455    C_ wss 3130   (/)c0 3423   ifcif 3535   {csn 3593   class class class wbr 4004    X. cxp 4625   dom cdm 4627   Fun wfun 5211   -->wf 5213   ` cfv 5217   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814   NNcn 8919   ZZcz 9253   ZZ>=cuz 9528    seqcseq 10445    ~~> cli 11286   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by:  isumz  11397  fsumf1o  11398  fsumcllem  11407  fsumadd  11414  fsum2d  11443  fisumrev2  11454  fsummulc2  11456  fsumconst  11462  modfsummod  11466  fsumabs  11473  telfsumo  11474  fsumparts  11478  fsumrelem  11479  fsumiun  11485  isumsplit  11499  arisum  11506  arisum2  11507  cvgratnnlemseq  11534  fsumcncntop  14059
  Copyright terms: Public domain W3C validator