Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iffalsei | GIF version |
Description: Inference associated with iffalse 3528. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iffalsei.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
2 | iffalse 3528 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: 0tonninf 10374 sum0 11329 prod0 11526 ennnfonelem1 12340 dcapnconst 13949 |
Copyright terms: Public domain | W3C validator |