| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalsei | GIF version | ||
| Description: Inference associated with iffalse 3583. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iffalsei.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| iffalsei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsei.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | iffalse 3583 | . 2 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1373 ifcif 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3576 |
| This theorem is referenced by: 0tonninf 10602 sum0 11769 prod0 11966 ennnfonelem1 12848 vtxval0 15720 iedgval0 15721 nnnninfex 16094 dcapnconst 16135 |
| Copyright terms: Public domain | W3C validator |