ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefals Unicode version

Theorem ifnefals 3615
Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnefals  |-  ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )

Proof of Theorem ifnefals
StepHypRef Expression
1 iftrue 3577 . . 3  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
21adantl 277 . 2  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =  A )
3 simplr 528 . . . 4  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =  B )
4 simpll 527 . . . . 5  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  A  =/=  B
)
54necomd 2463 . . . 4  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  B  =/=  A
)
63, 5eqnetrd 2401 . . 3  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =/=  A )
76neneqd 2398 . 2  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  -.  if ( ph ,  A ,  B )  =  A )
82, 7pm2.65da 663 1  |-  ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    =/= wne 2377   ifcif 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ne 2378  df-if 3573
This theorem is referenced by:  ifnebibdc  3616
  Copyright terms: Public domain W3C validator