| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnefals | Unicode version | ||
| Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnefals |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3587 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | simplr 528 |
. . . 4
| |
| 4 | simpll 527 |
. . . . 5
| |
| 5 | 4 | necomd 2466 |
. . . 4
|
| 6 | 3, 5 | eqnetrd 2404 |
. . 3
|
| 7 | 6 | neneqd 2401 |
. 2
|
| 8 | 2, 7 | pm2.65da 665 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-ne 2381 df-if 3583 |
| This theorem is referenced by: ifnebibdc 3628 |
| Copyright terms: Public domain | W3C validator |