ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefals Unicode version

Theorem ifnefals 3627
Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnefals  |-  ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )

Proof of Theorem ifnefals
StepHypRef Expression
1 iftrue 3587 . . 3  |-  ( ph  ->  if ( ph ,  A ,  B )  =  A )
21adantl 277 . 2  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =  A )
3 simplr 528 . . . 4  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =  B )
4 simpll 527 . . . . 5  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  A  =/=  B
)
54necomd 2466 . . . 4  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  B  =/=  A
)
63, 5eqnetrd 2404 . . 3  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  if ( ph ,  A ,  B )  =/=  A )
76neneqd 2401 . 2  |-  ( ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  /\  ph )  ->  -.  if ( ph ,  A ,  B )  =  A )
82, 7pm2.65da 665 1  |-  ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1375    =/= wne 2380   ifcif 3582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ne 2381  df-if 3583
This theorem is referenced by:  ifnebibdc  3628
  Copyright terms: Public domain W3C validator