| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnetruedc | Unicode version | ||
| Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnetruedc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | iffalse 3580 |
. . . 4
| |
| 3 | 2 | adantl 277 |
. . 3
|
| 4 | simpl3 1005 |
. . . . 5
| |
| 5 | simpl2 1004 |
. . . . 5
| |
| 6 | 4, 5 | eqnetrd 2401 |
. . . 4
|
| 7 | 6 | neneqd 2398 |
. . 3
|
| 8 | 3, 7 | condandc 883 |
. 2
|
| 9 | 1, 8 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ne 2378 df-if 3573 |
| This theorem is referenced by: ifnebibdc 3616 |
| Copyright terms: Public domain | W3C validator |