ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnetruedc Unicode version

Theorem ifnetruedc 3598
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnetruedc  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )

Proof of Theorem ifnetruedc
StepHypRef Expression
1 simp1 999 . 2  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  -> DECID  ph )
2 iffalse 3565 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
32adantl 277 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  B )
4 simpl3 1004 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  A )
5 simpl2 1003 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  A  =/=  B )
64, 5eqnetrd 2388 . . . 4  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =/=  B
)
76neneqd 2385 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  -.  if ( ph ,  A ,  B )  =  B )
83, 7condandc 882 . 2  |-  (DECID  ph  ->  ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph ) )
91, 8mpcom 36 1  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364    =/= wne 2364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ne 2365  df-if 3558
This theorem is referenced by:  ifnebibdc  3600
  Copyright terms: Public domain W3C validator