ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnetruedc Unicode version

Theorem ifnetruedc 3626
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnetruedc  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )

Proof of Theorem ifnetruedc
StepHypRef Expression
1 simp1 1002 . 2  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  -> DECID  ph )
2 iffalse 3590 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
32adantl 277 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  B )
4 simpl3 1007 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  A )
5 simpl2 1006 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  A  =/=  B )
64, 5eqnetrd 2404 . . . 4  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =/=  B
)
76neneqd 2401 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  -.  if ( ph ,  A ,  B )  =  B )
83, 7condandc 885 . 2  |-  (DECID  ph  ->  ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph ) )
91, 8mpcom 36 1  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 838    /\ w3a 983    = wceq 1375    =/= wne 2380   ifcif 3582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ne 2381  df-if 3583
This theorem is referenced by:  ifnebibdc  3628
  Copyright terms: Public domain W3C validator