ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnetruedc Unicode version

Theorem ifnetruedc 3614
Description: Deduce truth from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnetruedc  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )

Proof of Theorem ifnetruedc
StepHypRef Expression
1 simp1 1000 . 2  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  -> DECID  ph )
2 iffalse 3580 . . . 4  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
32adantl 277 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  B )
4 simpl3 1005 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =  A )
5 simpl2 1004 . . . . 5  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  A  =/=  B )
64, 5eqnetrd 2401 . . . 4  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  if ( ph ,  A ,  B )  =/=  B
)
76neneqd 2398 . . 3  |-  ( ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  /\  -.  ph )  ->  -.  if ( ph ,  A ,  B )  =  B )
83, 7condandc 883 . 2  |-  (DECID  ph  ->  ( (DECID 
ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph ) )
91, 8mpcom 36 1  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104  DECID wdc 836    /\ w3a 981    = wceq 1373    =/= wne 2377   ifcif 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ne 2378  df-if 3573
This theorem is referenced by:  ifnebibdc  3616
  Copyright terms: Public domain W3C validator