| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifnebibdc | Unicode version | ||
| Description: The converse of ifbi 3581 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| ifnebibdc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqifdc 3596 | 
. . . 4
 | |
| 2 | 1 | 3ad2ant2 1021 | 
. . 3
 | 
| 3 | ifnetruedc 3602 | 
. . . . . . . . 9
 | |
| 4 | 3 | 3expia 1207 | 
. . . . . . . 8
 | 
| 5 | 4 | 3adant2 1018 | 
. . . . . . 7
 | 
| 6 | 5 | adantld 278 | 
. . . . . 6
 | 
| 7 | simpl 109 | 
. . . . . 6
 | |
| 8 | 6, 7 | jca2 308 | 
. . . . 5
 | 
| 9 | pm5.1 601 | 
. . . . 5
 | |
| 10 | 8, 9 | syl6 33 | 
. . . 4
 | 
| 11 | ifnefals 3603 | 
. . . . . . . . 9
 | |
| 12 | 11 | ex 115 | 
. . . . . . . 8
 | 
| 13 | 12 | 3ad2ant3 1022 | 
. . . . . . 7
 | 
| 14 | 13 | adantld 278 | 
. . . . . 6
 | 
| 15 | simpl 109 | 
. . . . . 6
 | |
| 16 | 14, 15 | jca2 308 | 
. . . . 5
 | 
| 17 | pm5.21 696 | 
. . . . 5
 | |
| 18 | 16, 17 | syl6 33 | 
. . . 4
 | 
| 19 | 10, 18 | jaod 718 | 
. . 3
 | 
| 20 | 2, 19 | sylbid 150 | 
. 2
 | 
| 21 | ifbi 3581 | 
. 2
 | |
| 22 | 20, 21 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ne 2368 df-if 3562 | 
| This theorem is referenced by: nninfinf 10535 | 
| Copyright terms: Public domain | W3C validator |