ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnebibdc Unicode version

Theorem ifnebibdc 3600
Description: The converse of ifbi 3577 holds if the two values are not equal. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Assertion
Ref Expression
ifnebibdc  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ph  <->  ps ) ) )

Proof of Theorem ifnebibdc
StepHypRef Expression
1 eqifdc 3592 . . . 4  |-  (DECID  ps  ->  ( if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ( ps  /\  if ( ph ,  A ,  B )  =  A )  \/  ( -. 
ps  /\  if ( ph ,  A ,  B )  =  B ) ) ) )
213ad2ant2 1021 . . 3  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ( ps  /\  if ( ph ,  A ,  B )  =  A )  \/  ( -.  ps  /\  if ( ph ,  A ,  B )  =  B ) ) ) )
3 ifnetruedc 3598 . . . . . . . . 9  |-  ( (DECID  ph  /\  A  =/=  B  /\  if ( ph ,  A ,  B )  =  A )  ->  ph )
433expia 1207 . . . . . . . 8  |-  ( (DECID  ph  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  A  ->  ph ) )
543adant2 1018 . . . . . . 7  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  A  ->  ph ) )
65adantld 278 . . . . . 6  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( ps 
/\  if ( ph ,  A ,  B )  =  A )  ->  ph ) )
7 simpl 109 . . . . . 6  |-  ( ( ps  /\  if (
ph ,  A ,  B )  =  A )  ->  ps )
86, 7jca2 308 . . . . 5  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( ps 
/\  if ( ph ,  A ,  B )  =  A )  -> 
( ph  /\  ps )
) )
9 pm5.1 601 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ph  <->  ps )
)
108, 9syl6 33 . . . 4  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( ps 
/\  if ( ph ,  A ,  B )  =  A )  -> 
( ph  <->  ps ) ) )
11 ifnefals 3599 . . . . . . . . 9  |-  ( ( A  =/=  B  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
1211ex 115 . . . . . . . 8  |-  ( A  =/=  B  ->  ( if ( ph ,  A ,  B )  =  B  ->  -.  ph ) )
13123ad2ant3 1022 . . . . . . 7  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  B  ->  -.  ph ) )
1413adantld 278 . . . . . 6  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( -. 
ps  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ph )
)
15 simpl 109 . . . . . 6  |-  ( ( -.  ps  /\  if ( ph ,  A ,  B )  =  B )  ->  -.  ps )
1614, 15jca2 308 . . . . 5  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( -. 
ps  /\  if ( ph ,  A ,  B )  =  B )  ->  ( -.  ph 
/\  -.  ps )
) )
17 pm5.21 696 . . . . 5  |-  ( ( -.  ph  /\  -.  ps )  ->  ( ph  <->  ps )
)
1816, 17syl6 33 . . . 4  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( -. 
ps  /\  if ( ph ,  A ,  B )  =  B )  ->  ( ph  <->  ps ) ) )
1910, 18jaod 718 . . 3  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( ( ( ps  /\  if (
ph ,  A ,  B )  =  A )  \/  ( -. 
ps  /\  if ( ph ,  A ,  B )  =  B ) )  ->  ( ph 
<->  ps ) ) )
202, 19sylbid 150 . 2  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  if ( ps ,  A ,  B )  ->  ( ph 
<->  ps ) ) )
21 ifbi 3577 . 2  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  A ,  B )  =  if ( ps ,  A ,  B ) )
2220, 21impbid1 142 1  |-  ( (DECID  ph  /\ DECID  ps  /\  A  =/=  B )  ->  ( if (
ph ,  A ,  B )  =  if ( ps ,  A ,  B )  <->  ( ph  <->  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    =/= wne 2364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ne 2365  df-if 3558
This theorem is referenced by:  nninfinf  10514
  Copyright terms: Public domain W3C validator