Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.65da | Unicode version |
Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
Ref | Expression |
---|---|
pm2.65da.1 | |
pm2.65da.2 |
Ref | Expression |
---|---|
pm2.65da |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65da.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | pm2.65da.2 | . . 3 | |
4 | 3 | ex 114 | . 2 |
5 | 2, 4 | pm2.65d 650 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem is referenced by: condandc 871 nelrdva 2932 exmid01 4176 frirrg 4327 fimax2gtrilemstep 6862 unsnfidcex 6881 unsnfidcel 6882 difinfsn 7061 nninfisollemne 7091 fodju0 7107 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 ltntri 8022 prodgt0 8743 ixxdisj 9835 icodisj 9924 iseqf1olemnab 10419 seq3f1olemqsumk 10430 ltabs 11025 divalglemnqt 11853 zsupcllemstep 11874 infssuzex 11878 suprzubdc 11881 sqnprm 12064 znnen 12327 dedekindeulemuub 13195 dedekindeulemlu 13199 dedekindicclemuub 13204 dedekindicclemlu 13208 ivthinclemlopn 13214 ivthinclemuopn 13216 limcimo 13234 cnplimclemle 13237 pilem3 13304 logbgcd1irraplemexp 13486 pwtrufal 13837 pwle2 13838 peano3nninf 13847 nninffeq 13860 refeq 13867 trilpolemeq1 13879 taupi 13909 |
Copyright terms: Public domain | W3C validator |