| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifnefals | GIF version | ||
| Description: Deduce falsehood from a conditional operator value. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| ifnefals | ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3577 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| 3 | simplr 528 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 4 | simpll 527 | . . . . 5 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → 𝐴 ≠ 𝐵) | |
| 5 | 4 | necomd 2463 | . . . 4 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → 𝐵 ≠ 𝐴) |
| 6 | 3, 5 | eqnetrd 2401 | . . 3 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≠ 𝐴) |
| 7 | 6 | neneqd 2398 | . 2 ⊢ (((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) ∧ 𝜑) → ¬ if(𝜑, 𝐴, 𝐵) = 𝐴) |
| 8 | 2, 7 | pm2.65da 663 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ if(𝜑, 𝐴, 𝐵) = 𝐵) → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ≠ wne 2377 ifcif 3572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ne 2378 df-if 3573 |
| This theorem is referenced by: ifnebibdc 3616 |
| Copyright terms: Public domain | W3C validator |